
PNG

Philippe Duchenne

PNG ii

COLLABORATORS

TITLE :

PNG

ACTION NAME DATE SIGNATURE

WRITTEN BY Philippe Duchenne March 1, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

PNG iii

Contents

1 PNG 1

1.1 PNG (Portable Network Graphics) Specification . 1

1.2 PNG specification: Table of Contents . 2

1.3 1. Introduction . 5

1.4 2. Data Representation . 7

1.5 2.1. Integers and byte order . 8

1.6 2.2. Color values . 8

1.7 2.3. Image layout . 9

1.8 2.4. Alpha channel . 10

1.9 2.5. Filtering . 11

1.10 2.6. Interlaced data order . 11

1.11 2.7. Gamma correction . 12

1.12 2.8. Text strings . 13

1.13 3. File Structure . 14

1.14 3.1. PNG file signature . 14

1.15 3.2. Chunk layout . 14

1.16 3.3. Chunk naming conventions . 15

1.17 3.4. CRC algorithm . 18

1.18 4. Chunk Specifications . 18

1.19 4.1. Critical chunks . 19

1.20 4.1.1. IHDR Image header . 20

1.21 4.1.2. PLTE Palette . 21

1.22 4.1.3. IDAT Image data . 22

1.23 4.1.4. IEND Image trailer . 23

1.24 4.2. Ancillary chunks . 23

1.25 4.2.1. bKGD Background color . 24

1.26 4.2.2. cHRM Primary chromaticities and white point . 24

1.27 4.2.3. gAMA Image gamma . 25

1.28 4.2.4. hIST Image histogram . 26

1.29 4.2.5. pHYs Physical pixel dimensions . 27

PNG iv

1.30 4.2.6. sBIT Significant bits . 27

1.31 4.2.7. tEXt Textual data . 29

1.32 4.2.8. tIME Image last-modification time . 30

1.33 4.2.9. tRNS Transparency . 30

1.34 4.2.10. zTXt Compressed textual data . 32

1.35 4.3. Summary of standard chunks . 33

1.36 4.4. Additional chunk types . 33

1.37 5. Deflate/Inflate Compression . 34

1.38 6. Filter Algorithms . 36

1.39 6.1. Filter types . 36

1.40 6.2. Filter type 0: None . 37

1.41 6.3. Filter type 1: Sub . 37

1.42 6.4. Filter type 2: Up . 38

1.43 6.5. Filter type 3: Average . 39

1.44 6.6. Filter type 4: Paeth . 40

1.45 7. Chunk Ordering Rules . 41

1.46 7.1. Behavior of PNG editors . 42

1.47 7.2. Ordering of ancillary chunks . 42

1.48 7.3. Ordering of critical chunks . 43

1.49 8. Miscellaneous Topics . 43

1.50 8.1. File name extension . 43

1.51 8.2. Internet media type . 44

1.52 8.3. Macintosh file layout . 44

1.53 8.4. Multiple-image extension . 44

1.54 8.5. Security considerations . 45

1.55 9. Recommendations for Encoders . 45

1.56 9.1. Sample depth scaling . 46

1.57 9.2. Encoder gamma handling . 47

1.58 9.3. Encoder color handling . 50

1.59 9.4. Alpha channel creation . 51

1.60 9.5. Suggested palettes . 52

1.61 9.6. Filter selection . 53

1.62 9.7. Text chunk processing . 53

1.63 9.8. Use of private chunks . 54

1.64 9.9. Private type and method codes . 55

1.65 10. Recommendations for Decoders . 55

1.66 10.1. Error checking . 56

1.67 10.2. Pixel dimensions . 57

1.68 10.3. Truecolor image handling . 57

PNG v

1.69 10.4. Sample depth rescaling . 57

1.70 10.5. Decoder gamma handling . 58

1.71 10.6. Decoder color handling . 60

1.72 10.7. Background color . 61

1.73 10.8. Alpha channel processing . 62

1.74 10.9. Progressive display . 65

1.75 10.10. Suggested-palette and histogram usage . 66

1.76 10.11. Text chunk processing . 67

1.77 11. Glossary . 68

1.78 12. Appendix: Rationale . 72

1.79 12.1. Why a new file format? . 72

1.80 12.2. Why these features? . 73

1.81 12.3. Why not these features? . 73

1.82 12.4. Why not use format X? . 75

1.83 12.5. Byte order . 75

1.84 12.6. Interlacing . 76

1.85 12.7. Why gamma? . 76

1.86 12.8. Non-premultiplied alpha . 77

1.87 12.9. Filtering . 78

1.88 12.10. Text strings . 78

1.89 12.11. PNG file signature . 79

1.90 12.12. Chunk layout . 80

1.91 12.13. Chunk naming conventions . 80

1.92 12.14. Palette histograms . 82

1.93 13. Appendix: Gamma Tutorial . 82

1.94 14. Appendix: Color Tutorial . 89

1.95 15. Appendix: Sample CRC Code . 93

1.96 16. Appendix: Online Resources . 94

1.97 17. Appendix: Revision History . 95

1.98 18. References . 96

1.99 19. Credits . 98

1.100AmigaGuide version 1.0 . 101

PNG 1 / 101

Chapter 1

PNG

1.1 PNG (Portable Network Graphics) Specification

PNG (Portable Network Graphics) Specification

AmigaGuide version 1.0
W3C Recommendation 01-October-1996

For list of authors, see
Credits (Chapter 19)
.

Table of Contents
Status of this document

This document has been reviewed by W3C members and other interested
parties and has been endorsed by the Director as a W3C Recommendation.
It is a stable document and may be used as reference material or cited
as a normative reference from another document. W3C’s role in making
the Recommendation is to draw attention to the specification and to
promote its widespread deployment. This enhances the functionality
and interoperability of the Web.

A list of current W3C Recommendations and other technical documents
can be found at http://www.w3.org/pub/WWW/TR/.

The Consortium staff have encouraged the development of PNG,
as have Compuserve, Inc. Most of the work has been done by the
PNG Development Group, png-group@w3.org.
The Consortium does not currently have plans to work on any
future versions of PNG, though were the necessity to arise,
and were an activity in that area to receive the support of Members,
the Consortium could in principle support some future activity.

Abstract

This document describes PNG (Portable Network Graphics), an extensible
file format for the lossless, portable, well-compressed storage of raster

PNG 2 / 101

images. PNG provides a patent-free replacement for GIF and
can also replace many common uses of TIFF. Indexed-color,
grayscale, and truecolor images are supported, plus an optional
alpha channel. Sample depths range from 1 to 16 bits.

PNG is designed to work well in online viewing applications, such as
the World Wide Web, so it is fully streamable with a progressive
display option.
PNG is robust, providing both full file integrity checking and
simple detection of common transmission errors.
Also, PNG can store gamma and chromaticity data for
improved color matching on heterogeneous platforms.

This specification defines a proposed Internet Media Type
image/png.

1.2 PNG specification: Table of Contents

Table of Contents

1. Introduction

2. Data Representation

2.1. Integers and byte order

2.2. Color values

2.3. Image layout

2.4. Alpha channel

2.5. Filtering

2.6. Interlaced data order

2.7. Gamma correction

2.8. Text strings

3. File Structure

3.1. PNG file signature

3.2. Chunk layout

3.3. Chunk naming conventions

3.4. CRC algorithm

4. Chunk Specifications

PNG 3 / 101

4.1. Critical chunks

4.1.1. IHDR Image header

4.1.2. PLTE Palette

4.1.3. IDAT Image data

4.1.4. IEND Image trailer

4.2. Ancillary chunks

4.2.1. bKGD Background color

4.2.2. cHRM Primary chromaticities and white point

4.2.3. gAMA Image gamma

4.2.4. hIST Image histogram

4.2.5. pHYs Physical pixel dimensions

4.2.6. sBIT Significant bits

4.2.7. tEXt Textual data

4.2.8. tIME Image last-modification time

4.2.9. tRNS Transparency

4.2.10. zTXt Compressed textual data

4.3. Summary of standard chunks

4.4. Additional chunk types

5. Deflate/Inflate Compression

6. Filter Algorithms

6.1. Filter types

6.2. Filter type 0: None

6.3. Filter type 1: Sub

6.4. Filter type 2: Up

6.5. Filter type 3: Average

6.6. Filter type 4: Paeth

7. Chunk Ordering Rules

7.1. Behavior of PNG editors

PNG 4 / 101

7.2. Ordering of ancillary chunks

7.3. Ordering of critical chunks

8. Miscellaneous Topics

8.1. File name extension

8.2. Internet media type

8.3. Macintosh file layout

8.4. Multiple-image extension

8.5. Security considerations

9. Recommendations for Encoders

9.1. Sample depth scaling

9.2. Encoder gamma handling

9.3. Encoder color handling

9.4. Alpha channel creation

9.5. Suggested palettes

9.6. Filter selection

9.7. Text chunk processing

9.8. Use of private chunks

9.9. Private type and method codes

10. Recommendations for Decoders

10.1. Error checking

10.2. Pixel dimensions

10.3. Truecolor image handling

10.4. Sample depth rescaling

10.5. Decoder gamma handling

10.6. Decoder color handling

10.7. Background color

10.8. Alpha channel processing

10.9. Progressive display

10.10. Suggested-palette and histogram usage

PNG 5 / 101

10.11. Text chunk processing

11. Glossary

12. Appendix: Rationale

12.1. Why a new file format?

12.2. Why these features?

12.3. Why not these features?

12.4. Why not use format X?

12.5. Byte order

12.6. Interlacing

12.7. Why gamma?

12.8. Non-premultiplied alpha

12.9. Filtering

12.10. Text strings

12.11. PNG file signature

12.12. Chunk layout

12.13. Chunk naming conventions

12.14. Palette histograms

13. Appendix: Gamma Tutorial

14. Appendix: Color Tutorial

15. Appendix: Sample CRC Code

16. Appendix: Online Resources

17. Appendix: Revision History

18. References

19. Credits

1.3 1. Introduction

1. Introduction

The PNG format provides a portable, legally

PNG 6 / 101

unencumbered, well-compressed, well-specified standard for
lossless bitmapped image files.

Although the initial motivation for developing PNG was to replace GIF,
the design provides some useful new features not available in
GIF, with minimal cost to developers.

GIF features retained in PNG include:

- Indexed-color images of up to 256 colors.
- Streamability: files can be read and written

serially, thus allowing the file format to be used as a communications
protocol for on-the-fly generation and display of images.

- Progressive display: a suitably prepared image file can be
displayed as it is received over a communications link,
yielding a low-resolution image very quickly
followed by gradual improvement of detail.

- Transparency: portions of the image can be marked as transparent,
creating the effect of a non-rectangular image.

- Ancillary information: textual comments and other data can be
stored within the image file.

- Complete hardware and platform independence.
- Effective, 100% lossless compression.

Important new features of PNG, not available in GIF, include:

- Truecolor images of up to 48 bits per pixel.
- Grayscale images of up to 16 bits per pixel.
- Full alpha channel (general transparency masks).
- Image gamma information, which supports automatic display of images

with correct brightness/contrast regardless of the machines used to
originate and display the image.

- Reliable, straightforward detection of file corruption.
- Faster initial presentation in progressive display mode.

PNG is designed to be:

- Simple and portable: developers should be able to implement PNG
easily.

- Legally unencumbered: to the best knowledge of the PNG
authors, no algorithms under legal challenge are used. (Some
considerable effort has been spent to verify this.)

- Well compressed: both indexed-color and truecolor images are
compressed as effectively as in any other widely used lossless format,
and in most cases more effectively.

- Interchangeable: any standard-conforming PNG decoder must read
all conforming PNG files.

- Flexible: the format allows for future extensions and
private add-ons, without compromising interchangeability of basic PNG.

- Robust: the design supports full file integrity checking as well
as simple, quick detection of common transmission errors.

The main part of this specification gives the definition of the file
format and recommendations for encoder and decoder behavior. An
appendix gives the rationale for many design decisions. Although the
rationale is not part of the formal specification, reading it can help

PNG 7 / 101

implementors understand the design. Cross-references in the main text
point to relevant parts of the rationale. Additional appendixes, also
not part of the formal specification, provide tutorials on gamma and
color theory as well as other supporting material.

In this specification, the word "must" indicates a mandatory requirement,
while "should" indicates recommended behavior.

See Rationale:

Why a new file format? (Section 12.1)
,

Why these features? (Section 12.2)
,

Why not these features? (Section 12.3)
,

Why not use format X? (Section 12.4)
.

Pronunciation

PNG is pronounced "ping".

1.4 2. Data Representation

2. Data Representation

This chapter discusses basic data representations used in PNG files,
as well as the expected representation of the image data.

2.1. Integers and byte order

2.2. Color values

2.3. Image layout

2.4. Alpha channel

2.5. Filtering

2.6. Interlaced data order

2.7. Gamma correction

2.8. Text strings

PNG 8 / 101

1.5 2.1. Integers and byte order

2.1. Integers and byte order

All integers that require more than one byte must be in network byte
order: the most significant byte comes first, then the
less significant bytes in descending order of significance (MSB LSB
for two-byte integers, B3 B2 B1 B0 for four-byte integers). The
highest bit (value 128) of a byte is numbered bit 7; the lowest bit
(value 1) is numbered bit 0. Values are unsigned unless otherwise
noted. Values explicitly noted as signed are represented in two’s
complement notation.

See Rationale:

Byte order (Section 12.5)
.

1.6 2.2. Color values

2.2. Color values

Colors can be represented by either grayscale or RGB (red, green,
blue) sample data. Grayscale data represents luminance; RGB data
represents calibrated color information (if the cHRM chunk is
present) or uncalibrated device-dependent color (if cHRM is
absent).
All color values range from zero (representing black) to most intense
at the maximum value for the sample depth. Note that the maximum value
at a given sample depth is (2^sampledepth)-1, not 2^sampledepth.

Sample values are not necessarily linear; the
gAMA chunk specifies the gamma characteristic of the source
device, and viewers are strongly encouraged to compensate properly.
See

Gamma correction (Section 2.7)
.

Source data with a precision not directly
supported in PNG (for example, 5 bit/sample truecolor) must be scaled
up to the next higher supported bit depth. This scaling is reversible
with no loss of data, and it reduces the number of cases
that decoders have to cope with.
See Recommendations for Encoders:

Sample depth scaling (Section 9.1)
and Recommendations for Decoders:

Sample depth rescaling (Section 10.4)
.

PNG 9 / 101

1.7 2.3. Image layout

2.3. Image layout

Conceptually, a PNG image is a rectangular pixel array, with
pixels appearing left-to-right within each scanline, and scanlines
appearing top-to-bottom. (For progressive display purposes, the
data may actually be transmitted in a different order; see

Interlaced data order, Section 2.6
.)

The size of each pixel is determined by the bit depth,
which is the number of bits per sample in the image data.

Three types of pixel are supported:

- An indexed-color pixel is represented by a single sample
that is an index into a supplied palette. The image bit depth
determines the maximum number of palette entries, but not the color
precision within the palette.

- A grayscale pixel is represented by a single sample that
is a grayscale level, where zero is black and the largest value for
the bit depth is white.

- A truecolor pixel is represented by three samples:
red (zero = black, max = red) appears first, then
green (zero = black, max = green), then
blue (zero = black, max = blue). The bit depth specifies the size of
each sample, not the total pixel size.

Optionally, grayscale and truecolor pixels can also include an alpha
sample, as described in the next section.

Pixels are always packed into scanlines with no wasted bits between
pixels. Pixels smaller than a byte never cross byte boundaries; they
are packed into bytes with the leftmost pixel in the high-order bits
of a byte, the rightmost in the low-order bits. Permitted bit depths
and pixel types are restricted so that in all cases the packing is
simple and efficient.

PNG permits multi-sample pixels only with 8- and 16-bit samples, so
multiple samples of a single pixel are never packed into one byte.
16-bit samples are stored in network byte order (MSB first).

Scanlines always begin on byte boundaries. When pixels have
fewer than 8 bits and the scanline width is not evenly divisible by
the number of pixels per byte, the low-order bits in the last byte
of each scanline are wasted. The contents of these wasted bits
are unspecified.

An additional "filter type" byte is added to the beginning of every
scanline (see

Filtering, Section 2.5
). The filter type

byte is not considered part of the image data, but it is included in
the datastream sent to the compression step.

PNG 10 / 101

1.8 2.4. Alpha channel

2.4. Alpha channel

An alpha channel, representing transparency information on a per-pixel
basis, can be included in grayscale and truecolor PNG images.

An alpha value of zero represents full transparency, and a value of
(2^bitdepth)-1 represents a fully opaque pixel. Intermediate values
indicate partially transparent pixels that can be combined with a
background image to yield a composite image. (Thus, alpha is really
the degree of opacity of the pixel. But most people refer to alpha as
providing transparency information, not opacity information, and we
continue that custom here.)

Alpha channels can be included with images that have either 8 or 16
bits per sample, but not with images that have fewer than 8 bits per
sample. Alpha samples are represented with the same bit depth used
for the image samples. The alpha sample for each pixel is stored
immediately following the grayscale or RGB samples of the pixel.

The color values stored for a pixel are not affected by the alpha value
assigned to the pixel. This rule is sometimes called "unassociated"
or "non-premultiplied" alpha. (Another common technique is to store
sample values premultiplied by the alpha fraction; in effect, such an
image is already composited against a black background. PNG does
not use premultiplied alpha.)

Transparency control is also possible without the storage cost of a
full alpha channel. In an indexed-color image,
an alpha value can be defined for each palette entry. In
grayscale and truecolor images, a single
pixel value can be identified as being "transparent". These
techniques are controlled by the tRNS ancillary chunk type.

If no alpha channel nor tRNS chunk is present, all pixels in
the image are to be treated as fully opaque.

Viewers can support transparency control partially, or not at all.

See Rationale:

Non-premultiplied alpha (Section 12.8)
,

Recommendations for Encoders:

Alpha channel creation (Section 9.4)
,

and Recommendations for Decoders:

Alpha channel processing (Section 10.8)
.

PNG 11 / 101

1.9 2.5. Filtering

2.5. Filtering

PNG allows the image data to be filtered before it is
compressed. Filtering can improve the compressibility
of the data. The filter step itself does not reduce the size of the
data. All PNG filters are strictly lossless.

PNG defines several different filter algorithms, including "None"
which indicates no filtering. The filter algorithm is specified for
each scanline by a filter type byte that precedes the filtered
scanline in the precompression datastream. An intelligent encoder
can switch filters from one scanline to the next. The method for
choosing which filter to employ is up to the encoder.

See
Filter Algorithms (Chapter 6)
and Rationale:

Filtering (Section 12.9)
.

1.10 2.6. Interlaced data order

2.6. Interlaced data order

A PNG image can be stored in interlaced order to allow progressive
display. The purpose of this feature is to allow images to "fade
in" when they are being displayed on-the-fly. Interlacing slightly
expands the file size on average, but it gives the user a meaningful
display much more rapidly.
Note that decoders are required to be able to read interlaced images,
whether or not they actually perform progressive display.

With interlace method 0, pixels are stored sequentially from left to right,
and scanlines sequentially from top to bottom (no interlacing).

Interlace method 1, known as Adam7 after its author, Adam M. Costello,
consists of seven distinct passes over the image. Each pass transmits
a subset of the pixels in the image. The pass in which each pixel
is transmitted is defined by replicating the following 8-by-8 pattern
over the entire image, starting at the upper left corner:

1 6 4 6 2 6 4 6
7 7 7 7 7 7 7 7
5 6 5 6 5 6 5 6
7 7 7 7 7 7 7 7
3 6 4 6 3 6 4 6

PNG 12 / 101

7 7 7 7 7 7 7 7
5 6 5 6 5 6 5 6
7 7 7 7 7 7 7 7

Within each pass, the selected pixels are transmitted left to right
within a scanline, and selected scanlines sequentially from top to
bottom.
For example, pass 2 contains pixels 4, 12, 20, etc. of scanlines 0, 8,
16, etc. (numbering from 0,0 at the upper left corner). The last pass
contains the entirety of scanlines 1, 3, 5, etc.

The data within each pass is laid out as though it were a
complete image of the appropriate dimensions. For example,
if the complete image is 16 by 16 pixels, then pass 3 will
contain two scanlines, each containing four pixels. When pixels have
fewer than 8 bits, each such scanline is padded as needed to fill an
integral number of bytes (see

Image layout, Section 2.3
).

Filtering is done on this reduced image in the usual way, and a
filter type byte is transmitted before each of its scanlines (see

Filter Algorithms, Chapter 6
). Notice that the

transmission order is defined so that all the scanlines transmitted in
a pass will have the same number of pixels; this is necessary for
proper application of some of the filters.

Caution: If the image contains fewer than five columns
or fewer than five rows, some passes will be entirely empty. Encoders
and decoders must handle this case correctly.
In particular, filter type bytes are only associated with nonempty
scanlines; no filter type bytes are present in an empty pass.

See Rationale:

Interlacing (Section 12.6)
and Recommendations for Decoders:

Progressive display (Section 10.9)
.

1.11 2.7. Gamma correction

2.7. Gamma correction

PNG images can specify, via the gAMA chunk, the gamma
characteristic of the image with respect to the original scene.
Display programs are strongly encouraged to use this
information, plus information about the display device they are using
and room lighting, to present the image to the viewer in a way that
reproduces what the image’s original author saw as closely as
possible.

PNG 13 / 101

See
Gamma Tutorial (Chapter 13)
if you

aren’t already familiar with gamma issues.

Gamma correction is not applied to the alpha channel, if any. Alpha
samples always represent a linear fraction of full opacity.

For high-precision applications, the exact chromaticity of the RGB
data in a PNG image can be specified via the cHRM chunk,
allowing more accurate color matching than gamma correction
alone will provide.
See

Color Tutorial (Chapter 14)
if you aren’t already

familiar with color representation issues.

See Rationale:

Why gamma? (Section 12.7)
,

Recommendations for Encoders:

Encoder gamma handling (Section 9.2)
,

and Recommendations for Decoders:

Decoder gamma handling (Section 10.5)
.

1.12 2.8. Text strings

2.8. Text strings

A PNG file can store text associated with the image, such as an image
description or copyright notice. Keywords are used to indicate what
each text string represents.

ISO 8859-1 (Latin-1) is the character set recommended for use in text
strings ([ISO-8859] ftp://ftp.uu.net/graphics/png/documents/).
This character set is a superset of 7-bit ASCII.

Character codes not defined in Latin-1 should not be used, because
they have no platform-independent meaning. If a non-Latin-1 code does
appear in a PNG text string, its interpretation will vary across
platforms and decoders. Some systems might not even be able to
display all the characters in Latin-1, but most modern systems can.

Provision is also made for the storage of compressed text.

See Rationale:

Text strings (Section 12.10)
.

PNG 14 / 101

1.13 3. File Structure

3. File Structure

A PNG file consists of a PNG signature followed by a series
of chunks. This chapter defines the signature and the basic
properties of chunks. Individual chunk types are discussed in the
next chapter.

3.1. PNG file signature

3.2. Chunk layout

3.3. Chunk naming conventions

3.4. CRC algorithm

1.14 3.1. PNG file signature

3.1. PNG file signature

The first eight bytes of a PNG file always contain the following
(decimal) values:

137 80 78 71 13 10 26 10

This signature indicates that the remainder of the file contains a
single PNG image, consisting of a series of chunks beginning with
an IHDR chunk and ending with an IEND chunk.

See Rationale:

PNG file signature (Section 12.11)
.

1.15 3.2. Chunk layout

3.2. Chunk layout

Each chunk consists of four parts:

- Length:

PNG 15 / 101

A 4-byte unsigned integer giving the number of bytes in the chunk’s
data field. The length counts only the data field,
not itself, the chunk type code, or the CRC.
Zero is a valid length. Although encoders and decoders should
treat the length as unsigned, its value must not exceed (2^31)-1 bytes.

- Chunk Type:
A 4-byte chunk type code. For convenience in description and in
examining PNG files, type codes are restricted to consist of uppercase
and lowercase ASCII letters (A-Z and
a-z, or 65-90 and 97-122 decimal). However,
encoders and decoders must treat the codes as fixed binary values,
not character strings. For example, it would not be correct to
represent the type code IDAT by the EBCDIC equivalents of
those letters. Additional naming conventions for chunk types are
discussed in the next section.

- Chunk Data:
The data bytes appropriate to the chunk type, if any.
This field can be of zero length.

- CRC:
A 4-byte CRC (Cyclic Redundancy Check) calculated
on the preceding bytes in the chunk, including the chunk type code and
chunk data fields, but not including
the length field. The CRC is always present, even for
chunks containing no data.
See

CRC algorithm (Section 3.4)
.

The chunk data length can be any number of bytes up to the maximum;
therefore, implementors cannot assume that chunks are aligned on any
boundaries larger than bytes.

Chunks can appear in any order, subject to the restrictions placed on
each chunk type. (One notable restriction is that IHDR must
appear first and IEND must appear last; thus the
IEND chunk serves as an end-of-file marker.) Multiple chunks
of the same type can appear, but only if specifically permitted for
that type.

See Rationale:

Chunk layout (Section 12.12)
.

1.16 3.3. Chunk naming conventions

3.3. Chunk naming conventions

Chunk type codes are assigned so that a decoder can

PNG 16 / 101

determine some properties of a chunk even when it does not recognize the
type code. These rules are intended to allow safe, flexible extension
of the PNG format, by allowing a decoder to decide what to do when it
encounters an unknown chunk. The naming rules are not normally of
interest when the decoder does recognize the chunk’s type.

Four bits of the type code, namely bit 5 (value 32) of each byte, are
used to convey chunk properties. This choice means that a human can
read off the assigned properties according to whether each letter of
the type code is uppercase (bit 5 is 0) or lowercase (bit 5 is 1).
However, decoders should test the properties of an unknown chunk by
numerically testing the specified bits; testing whether a character
is uppercase or lowercase is inefficient, and even incorrect if a
locale-specific case definition is used.

It is worth noting that the property bits are an inherent part of
the chunk name, and hence are fixed for any chunk type. Thus,
TEXT and Text would be unrelated chunk type
codes, not the same chunk with different properties. Decoders must
recognize type codes by a simple four-byte literal comparison; it is
incorrect to perform case conversion on type codes.

The semantics of the property bits are:

- Ancillary bit: bit 5 of first byte:
0 (uppercase) = critical, 1 (lowercase) = ancillary.

Chunks that are not strictly necessary in order to meaningfully
display the contents of the file are known as "ancillary" chunks.
A decoder encountering an unknown chunk in which the ancillary bit
is 1 can safely ignore the chunk and proceed to display the image. The
time chunk (tIME) is an example of an ancillary chunk.

Chunks that are necessary for successful display of the file’s
contents are called "critical" chunks. A decoder encountering an
unknown chunk in which the ancillary bit is 0 must indicate to the
user that the image contains information it cannot safely interpret.
The image header chunk (IHDR) is an example of a critical chunk.

- Private bit: bit 5 of second byte:
0 (uppercase) = public, 1 (lowercase) = private.

A public chunk is one that is part of the PNG specification or is
registered in the list of PNG special-purpose public chunk types.
Applications can also define private (unregistered) chunks for their
own purposes. The names of private chunks must have a lowercase
second letter, while public chunks will always be assigned names with
uppercase second letters. Note that decoders do not need to test the
private-chunk property bit, since it has no functional significance;
it is simply an administrative convenience to ensure that public and
private chunk names will not conflict. See

Additional chunk types (Section 4.4)
and Recommendations for Encoders:

PNG 17 / 101

Use of private chunks (Section 9.8)
.

- Reserved bit: bit 5 of third byte:
Must be 0 (uppercase) in files conforming to this version of PNG.

The significance of the case of the third letter of the chunk name is
reserved for possible future expansion. At the present time all chunk
names must have uppercase third letters. (Decoders should not
complain about a lowercase third letter, however, as some future version
of the PNG specification could define a meaning for this bit. It is
sufficient to treat a chunk with a lowercase third letter in the same
way as any other unknown chunk type.)

- Safe-to-copy bit: bit 5 of fourth byte:
0 (uppercase) = unsafe to copy, 1 (lowercase) = safe to copy.

This property bit is not of interest to pure decoders, but it is
needed by PNG editors (programs that modify PNG files). This bit
defines the proper handling of unrecognized chunks in a file that
is being modified.

If a chunk’s safe-to-copy bit is 1, the chunk may be copied to a
modified PNG file whether or not the software recognizes the chunk
type, and regardless of the extent of the file modifications.

If a chunk’s safe-to-copy bit is 0, it indicates that the chunk
depends on the image data. If the program has made any
changes to critical chunks, including addition, modification,
deletion, or reordering of critical chunks, then unrecognized unsafe
chunks must not be copied to the output PNG file.
(Of course, if the program does recognize the chunk,
it can choose to output an appropriately modified version.)

A PNG editor is always allowed to copy all unrecognized chunks if it
has only added, deleted, modified, or reordered ancillary chunks.
This implies that it is not permissible for ancillary chunks to
depend on other ancillary chunks.

PNG editors that do not recognize a critical chunk must
report an error and refuse to process that PNG file at all. The
safe/unsafe mechanism is intended for use with ancillary chunks.
The safe-to-copy bit will always be 0 for critical chunks.

Rules for PNG editors are discussed further in

Chunk Ordering Rules (Chapter 7)
.

For example, the hypothetical chunk type name "bLOb" has the
property bits:

bLOb <-- 32 bit chunk type code represented in text form
||||

PNG 18 / 101

|||+- Safe-to-copy bit is 1 (lower case letter; bit 5 is 1)
||+-- Reserved bit is 0 (upper case letter; bit 5 is 0)
|+--- Private bit is 0 (upper case letter; bit 5 is 0)
+---- Ancillary bit is 1 (lower case letter; bit 5 is 1)

Therefore, this name represents an ancillary, public, safe-to-copy chunk.

See Rationale:

Chunk naming conventions (Section 12.13)
.

1.17 3.4. CRC algorithm

3.4. CRC algorithm

Chunk CRCs are calculated using standard CRC methods with pre and post
conditioning, as defined by ISO 3309 [ISO-3309] or ITU-T V.42 [ITU-V42].
The CRC polynomial employed is

x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1

The 32-bit CRC register is initialized to all 1’s, and then the data
from each byte is processed from the least significant bit (1) to the
most significant bit (128). After all the data bytes are processed,
the CRC register is inverted (its ones complement is taken). This
value is transmitted (stored in the file) MSB first. For the purpose of
separating into bytes and ordering, the least significant bit of
the 32-bit CRC is defined to be the coefficient of the
x^31
term.

Practical calculation of the CRC always employs a precalculated
table to greatly accelerate the computation. See

Sample CRC Code (Chapter 15)
.

1.18 4. Chunk Specifications

4. Chunk Specifications

This chapter defines the standard types of PNG chunks.

4.1. Critical chunks

4.1.1. IHDR Image header

PNG 19 / 101

4.1.2. PLTE Palette

4.1.3. IDAT Image data

4.1.4. IEND Image trailer

4.2. Ancillary chunks

4.2.1. bKGD Background color

4.2.2. cHRM Primary chromaticities and white point

4.2.3. gAMA Image gamma

4.2.4. hIST Image histogram

4.2.5. pHYs Physical pixel dimensions

4.2.6. sBIT Significant bits

4.2.7. tEXt Textual data

4.2.8. tIME Image last-modification time

4.2.9. tRNS Transparency

4.2.10. zTXt Compressed textual data

4.3. Summary of standard chunks

4.4. Additional chunk types

1.19 4.1. Critical chunks

4.1. Critical chunks

All implementations must understand and successfully render the
standard critical chunks. A valid PNG image must contain an
IHDR chunk, one or more IDAT chunks, and an
IEND chunk.

4.1.1. IHDR Image header

4.1.2. PLTE Palette

4.1.3. IDAT Image data

4.1.4. IEND Image trailer

PNG 20 / 101

1.20 4.1.1. IHDR Image header

4.1.1. IHDR

The IHDR chunk must appear FIRST. It contains:

Width: 4 bytes
Height: 4 bytes
Bit depth: 1 byte
Color type: 1 byte
Compression method: 1 byte
Filter method: 1 byte
Interlace method: 1 byte

Width and height give the image dimensions in pixels. They are 4-byte
integers. Zero is an invalid value. The maximum for each is (2^31)-1
in order to accommodate languages that have difficulty with unsigned
4-byte values.

Bit depth is a single-byte integer giving the number of bits per sample
or per palette index (not per pixel).
Valid values are 1, 2, 4, 8, and 16, although not all values are
allowed for all color types.

Color type is a single-byte integer that describes the interpretation
of the image data. Color type codes represent sums of the following
values: 1 (palette used), 2 (color used), and 4 (alpha channel
used). Valid values are 0, 2, 3, 4, and 6.

Bit depth restrictions for each color type are imposed to
simplify implementations and to prohibit combinations that do
not compress well. Decoders must support all legal
combinations of bit depth and color type. The allowed combinations
are:

Color Allowed Interpretation
Type Bit Depths

0 1,2,4,8,16 Each pixel is a grayscale sample.

2 8,16 Each pixel is an R,G,B triple.

3 1,2,4,8 Each pixel is a palette index;
a PLTE chunk must appear.

4 8,16 Each pixel is a grayscale sample,
followed by an alpha sample.

6 8,16 Each pixel is an R,G,B triple,
followed by an alpha sample.

The sample depth is the same as the bit depth except in the case of
color type 3, in which the sample depth is always 8 bits.

Compression method is a single-byte integer that indicates the method

PNG 21 / 101

used to compress the image data. At present, only compression method 0
(deflate/inflate compression with a 32K sliding window) is defined.
All standard PNG images must be compressed with this scheme. The
compression method field is provided for possible future expansion or
proprietary variants. Decoders must check this byte and report an
error if it holds an unrecognized code. See

Deflate/Inflate Compression (Chapter 5)
for details.

Filter method is a single-byte integer that indicates the preprocessing
method applied to the image data before compression. At present, only
filter method 0 (adaptive filtering with five basic filter types) is
defined. As with the compression method field,
decoders must check this byte and report an error if it holds an
unrecognized code.
See

Filter Algorithms (Chapter 6)
for details.

Interlace method is a single-byte integer that indicates the
transmission order of the image data. Two values are currently
defined: 0 (no interlace) or 1 (Adam7 interlace). See

Interlaced data order (Section 2.6)
for details.

1.21 4.1.2. PLTE Palette

4.1.2. PLTE

The PLTE chunk contains from 1 to 256 palette entries, each a
three-byte series of the form:

Red: 1 byte (0 = black, 255 = red)
Green: 1 byte (0 = black, 255 = green)
Blue: 1 byte (0 = black, 255 = blue)

The number of entries is determined from the chunk length. A chunk
length not divisible by 3 is an error.

This chunk must appear for color type 3, and can appear for color
types 2 and 6; it must not appear for color types 0 and 4. If this
chunk does appear, it must precede the first IDAT chunk.
There must not be more than one PLTE chunk.

For color type 3 (indexed color), the PLTE chunk is required.
The first entry in PLTE is referenced by pixel value 0, the
second by pixel value 1, etc. The number of palette entries must not
exceed the range that can be represented in the image bit depth (for
example, 2^4 = 16 for a bit depth of 4). It is permissible to have
fewer entries than the bit depth would allow. In that case, any
out-of-range pixel value found in the image data is an error.

PNG 22 / 101

For color types 2 and 6 (truecolor and truecolor with alpha), the
PLTE chunk is optional. If present, it provides a suggested
set of from 1 to 256 colors to which the truecolor image can be
quantized if the viewer cannot display truecolor directly. If
PLTE is not present, such a viewer will need to select colors on its
own, but it is often preferable for this to be done once by the
encoder. (See
Recommendations for Encoders:

Suggested palettes, Section 9.5
.)

Note that the palette uses 8 bits (1 byte) per sample
regardless of the image bit depth specification.
In particular, the palette is 8 bits deep even when it is
a suggested quantization of a 16-bit truecolor image.

There is no requirement that the palette entries all be used by the
image, nor that they all be different.

1.22 4.1.3. IDAT Image data

4.1.3. IDAT

The IDAT chunk contains the actual image data. To create
this data:

1) Begin with image scanlines represented as described in

Image layout (Section 2.3)
; the layout and total size of

this raw data are determined by the fields of IHDR.
2) Filter the image data according to the filtering method specified by

the IHDR chunk. (Note that with filter method 0, the only
one currently defined, this implies prepending a filter type byte to
each scanline.)

3) Compress the filtered data using the
compression method specified by the IHDR chunk.

The IDAT chunk contains the output datastream of the
compression algorithm.

To read the image data, reverse this process.

There can be multiple IDAT chunks; if so, they must appear
consecutively with no other intervening chunks. The compressed
datastream is then the concatenation of the contents of all the
IDAT chunks. The encoder can divide the compressed
datastream into IDAT chunks however it wishes.
(Multiple IDAT chunks are allowed so that
encoders can work in a fixed amount of memory; typically the chunk
size will correspond to the encoder’s buffer size.)
It is important to emphasize that IDAT chunk boundaries have
no semantic significance and can occur at any point in the compressed

PNG 23 / 101

datastream. A PNG file in which each IDAT chunk contains
only one data byte is legal, though remarkably wasteful of space.
(For that matter, zero-length IDAT chunks are legal, though
even more wasteful.)

See
Filter Algorithms (Chapter 6)
and

Deflate/Inflate Compression (Chapter 5)
for details.

1.23 4.1.4. IEND Image trailer

4.1.4. IEND

The IEND chunk must appear LAST. It marks the end of the PNG
datastream. The chunk’s data field is empty.

1.24 4.2. Ancillary chunks

4.2. Ancillary chunks

All ancillary chunks are optional, in the sense that encoders need not
write them and decoders can ignore them. However, encoders are
encouraged to write the standard ancillary chunks when the information
is available, and decoders are encouraged to interpret these chunks
when appropriate and feasible.

The standard ancillary chunks are listed in alphabetical order.
This is not necessarily the order in which they would appear in
a file.

4.2.1. bKGD Background color

4.2.2. cHRM Primary chromaticities and white point

4.2.3. gAMA Image gamma

4.2.4. hIST Image histogram

4.2.5. pHYs Physical pixel dimensions

4.2.6. sBIT Significant bits

4.2.7. tEXt Textual data

4.2.8. tIME Image last-modification time

4.2.9. tRNS Transparency

PNG 24 / 101

4.2.10. zTXt Compressed textual data

1.25 4.2.1. bKGD Background color

4.2.1. bKGD

The bKGD chunk specifies a default background color to present
the image against. Note that viewers are not bound to honor this
chunk; a viewer can choose to use a different background.

For color type 3 (indexed color), the bKGD chunk contains:

Palette index: 1 byte

The value is the palette index of the color to be used as background.

For color types 0 and 4 (grayscale, with or without alpha),
bKGD contains:

Gray: 2 bytes, range 0 .. (2^bitdepth)-1

(For consistency, 2 bytes are used regardless of the image
bit depth.) The value is the gray level to be used as background.

For color types 2 and 6 (truecolor, with or without alpha),
bKGD contains:

Red: 2 bytes, range 0 .. (2^bitdepth)-1
Green: 2 bytes, range 0 .. (2^bitdepth)-1
Blue: 2 bytes, range 0 .. (2^bitdepth)-1

(For consistency, 2 bytes per sample are used regardless of the image
bit depth.) This is the RGB color to be used as background.

When present, the bKGD chunk must precede the first
IDAT chunk, and must follow the PLTE chunk, if any.

See Recommendations for Decoders:

Background color (Section 10.7)
.

1.26 4.2.2. cHRM Primary chromaticities and white point

4.2.2. cHRM

Applications that need device-independent specification of colors in a
PNG file can use the cHRM chunk to specify the 1931 CIE
x,y chromaticities of the red, green, and blue primaries used

PNG 25 / 101

in the image, and the referenced white point. See

Color Tutorial (Chapter 14)
for more information.

The cHRM chunk contains:

White Point x: 4 bytes
White Point y: 4 bytes
Red x: 4 bytes
Red y: 4 bytes
Green x: 4 bytes
Green y: 4 bytes
Blue x: 4 bytes
Blue y: 4 bytes

Each value is encoded as a 4-byte unsigned integer,
representing the x or y value times 100000.
For example, a value of 0.3127 would be stored as the integer 31270.

cHRM is allowed in all PNG files, although it is of
little value for grayscale images.

If the encoder does not know the chromaticity values, it should not
write a cHRM chunk; the absence of a cHRM chunk
indicates that the image’s primary colors are device-dependent.

If the cHRM chunk appears, it must precede the first
IDAT chunk, and it must also precede the PLTE chunk
if present.

See Recommendations for Encoders:

Encoder color handling (Section 9.3)
,

and Recommendations for Decoders:

Decoder color handling (Section 10.6)
.

1.27 4.2.3. gAMA Image gamma

4.2.3. gAMA

The gAMA chunk specifies the gamma of the camera
(or simulated camera) that produced the image, and thus
the gamma of the image with respect to the original scene.
More precisely, the gAMA chunk encodes the
file_gamma value, as defined in

Gamma Tutorial (Chapter 13)
.

The gAMA chunk contains:

PNG 26 / 101

Image gamma: 4 bytes

The value is encoded as a 4-byte unsigned integer,
representing gamma times 100000. For example, a gamma
of 0.45 would be stored as the integer 45000.

If the encoder does not know the image’s gamma value, it should not
write a gAMA chunk; the absence of a gAMA chunk
indicates that the gamma is unknown.

If the gAMA chunk appears, it must precede the first
IDAT chunk, and it must also precede the PLTE chunk
if present.

See
Gamma correction (Section 2.7)
,

Recommendations for Encoders:

Encoder gamma handling (Section 9.2)
,

and Recommendations for Decoders:

Decoder gamma handling (Section 10.5)
.

1.28 4.2.4. hIST Image histogram

4.2.4. hIST

The hIST chunk gives the approximate usage frequency of each
color in the color palette. A histogram chunk can appear only when a
palette chunk appears. If a viewer is unable to provide all the
colors listed in the palette, the histogram may help it decide how to
choose a subset of the colors for display.

The hIST chunk contains a series of 2-byte (16 bit) unsigned
integers. There must be exactly one entry for each entry in the
PLTE chunk. Each entry is proportional to the fraction of
pixels in the image that have that palette index; the exact scale
factor is chosen by the encoder.

Histogram entries are approximate, with the exception that a zero
entry specifies that the corresponding palette entry is not used at
all in the image. It is required that a histogram entry be nonzero if
there are any pixels of that color.

When the palette is a suggested quantization of a truecolor image, the
histogram is necessarily approximate, since a decoder may map pixels
to palette entries differently than the encoder did. In this
situation, zero entries should not appear.

The hIST chunk, if it appears, must follow

PNG 27 / 101

the PLTE chunk, and must precede the first
IDAT chunk.

See Rationale:

Palette histograms (Section 12.14)
,

and Recommendations for Decoders:

Suggested-palette and histogram usage (Section 10.10)
.

1.29 4.2.5. pHYs Physical pixel dimensions

4.2.5 pHYs

The pHYs chunk specifies the intended pixel size or
aspect ratio for display of the image. It contains:

Pixels per unit, X axis: 4 bytes (unsigned integer)
Pixels per unit, Y axis: 4 bytes (unsigned integer)
Unit specifier: 1 byte

The following values are legal for the unit specifier:

0: unit is unknown
1: unit is the meter

When the unit specifier is 0, the pHYs chunk defines pixel
aspect ratio only; the actual size of the pixels remains unspecified.

Conversion note: one inch is equal to exactly 0.0254 meters.

If this ancillary chunk is not present, pixels are assumed to be
square, and the physical size of each pixel is unknown.

If present, this chunk must precede the first IDAT chunk.

See Recommendations for Decoders:

Pixel dimensions (Section 10.2)
.

1.30 4.2.6. sBIT Significant bits

4.2.6. sBIT

To simplify decoders, PNG specifies that only certain sample depths
can be used, and further specifies that sample values should be scaled
to the full range of possible values at the sample depth. However, the

PNG 28 / 101

sBIT chunk is provided in order to store the original number
of significant bits. This allows decoders to recover the original data
losslessly even if the data had a sample depth not directly supported by PNG.
We recommend that an encoder emit an sBIT chunk if it has
converted the data from a lower sample depth.

For color type 0 (grayscale), the sBIT chunk contains a
single byte, indicating the number of bits that were significant in
the source data.

For color type 2 (truecolor), the sBIT chunk contains
three bytes, indicating the number of bits that were significant in
the source data for the red, green, and blue channels, respectively.

For color type 3 (indexed color), the sBIT chunk contains
three bytes, indicating the number of bits that were significant in
the source data for the red, green, and blue components of the palette
entries, respectively.

For color type 4 (grayscale with alpha channel), the sBIT
chunk contains two bytes, indicating the number of bits that were
significant in the source grayscale data and the source alpha
data, respectively.

For color type 6 (truecolor with alpha channel), the sBIT
chunk contains four bytes, indicating the number of bits that were
significant in the source data for the red, green, blue and alpha
channels, respectively.

Each depth specified in sBIT must be greater than zero and
less than or equal to the sample depth (which is 8 for indexed-color
images, and the bit depth given in IHDR for other color
types).

A decoder need not pay attention to sBIT: the stored image
is a valid PNG file of the sample depth indicated by IHDR.
However, if the decoder wishes to recover the original data at its
original precision, this can be done by right-shifting the stored
samples (the stored palette entries, for an indexed-color image).
The encoder must scale the data in such a way that the high-order bits
match the original data.

If the sBIT chunk appears, it must precede the first
IDAT chunk, and it must also precede the PLTE chunk
if present.

See Recommendations for Encoders:

Sample depth scaling (Section 9.1)
and Recommendations for Decoders:

Sample depth rescaling (Section 10.4)
.

PNG 29 / 101

1.31 4.2.7. tEXt Textual data

4.2.7. tEXt

Textual information that the encoder wishes to record with the
image can be stored in tEXt chunks. Each tEXt chunk
contains a keyword and a text string, in the format:

Keyword: 1-79 bytes (character string)
Null separator: 1 byte
Text: n bytes (character string)

The keyword and text string are separated by a zero byte (null
character). Neither the keyword nor the text string can contain a null
character. Note that the text string is not null-terminated
(the length of the chunk is sufficient information to locate the
ending). The keyword must be at least one character and less than 80
characters long. The text string can be of any length from zero bytes
up to the maximum permissible chunk size less the length of the
keyword and separator.

Any number of tEXt chunks can appear, and more than one with
the same keyword is permissible.

The keyword indicates the type of information represented by the
text string. The following keywords are predefined and should
be used where appropriate:

Title Short (one line) title or caption for image
Author Name of image’s creator
Description Description of image (possibly long)
Copyright Copyright notice
Creation Time Time of original image creation
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion from

GIF comment

For the Creation Time keyword, the date format defined in section
5.2.14 of RFC 1123 is suggested, but not required
([RFC-1123] ftp://ds.internic.net/rfc/rfc1123.txt).
Decoders should allow for free-format
text associated with this or any other keyword.

Other keywords may be invented for other purposes. Keywords of
general interest can be registered with the maintainers of the PNG
specification. However, it is also permitted to use private
unregistered keywords. (Private keywords should be reasonably
self-explanatory, in order to minimize the chance that the same
keyword will be used for incompatible purposes by different people.)

Both keyword and text are interpreted according to the ISO 8859-1
(Latin-1) character set ([ISO-8859]
ftp.uu.net/graphics/png/documents/).

PNG 30 / 101

The text string can contain any Latin-1 character.
Newlines in the text string should be
represented by a single linefeed character (decimal 10); use of other
control characters in the text is discouraged.

Keywords must contain only printable Latin-1 characters and spaces;
that is, only character codes 32-126 and 161-255 decimal are allowed.
To reduce the chances for human misreading of a keyword, leading and
trailing spaces are forbidden, as are consecutive spaces. Note also
that the non-breaking space (code 160) is not permitted in keywords,
since it is visually indistinguishable from an ordinary space.

Keywords must be spelled exactly as registered, so that decoders can
use simple literal comparisons when looking for particular keywords.
In particular, keywords are considered case-sensitive.

See Recommendations for Encoders:

Text chunk processing (Section 9.7)
and Recommendations for Decoders:

Text chunk processing (Section 10.11)
.

1.32 4.2.8. tIME Image last-modification time

4.2.8. tIME

The tIME chunk gives the time of the last image modification
(not the time of initial image creation). It contains:

Year: 2 bytes (complete; for example, 1995, not 95)
Month: 1 byte (1-12)
Day: 1 byte (1-31)
Hour: 1 byte (0-23)
Minute: 1 byte (0-59)
Second: 1 byte (0-60) (yes, 60, for leap seconds; not 61,

a common error)

Universal Time (UTC, also called GMT) should be specified rather than
local time.

The tIME chunk is intended for use as an
automatically-applied time stamp that is updated whenever the image
data is changed. It is recommended that tIME not be changed
by PNG editors that do not change the image data. See also the
Creation Time tEXt keyword, which can be used for a
user-supplied time.

1.33 4.2.9. tRNS Transparency

PNG 31 / 101

4.2.9. tRNS

The tRNS chunk specifies that the image uses simple
transparency: either alpha values associated with palette entries
(for indexed-color images) or a single transparent color (for
grayscale and truecolor images).
Although simple transparency is not as elegant as the full alpha channel,
it requires less storage space and is sufficient for many common cases.

For color type 3 (indexed color), the tRNS chunk contains a
series of one-byte alpha values, corresponding to entries in the
PLTE chunk:

Alpha for palette index 0: 1 byte
Alpha for palette index 1: 1 byte
... etc ...

Each entry indicates that pixels of the corresponding palette index
must be treated as having the specified alpha value. Alpha values
have the same interpretation as in an 8-bit full alpha channel: 0 is
fully transparent, 255 is fully opaque, regardless of image bit
depth. The tRNS chunk must not contain more alpha values than
there are palette entries, but tRNS can contain fewer
values than there are palette entries. In this case, the alpha
value for all remaining palette entries is assumed to be 255.
In the common case in which only palette index 0 need be made
transparent, only a one-byte tRNS chunk is needed.

For color type 0 (grayscale), the tRNS chunk contains a
single gray level value, stored in the format:

Gray: 2 bytes, range 0 .. (2^bitdepth)-1

(For consistency, 2 bytes are used regardless of the image
bit depth.)
Pixels of the specified gray level are to be treated as transparent
(equivalent to alpha value 0); all other pixels are to be treated as
fully opaque (alpha value (2^bitdepth)-1).

For color type 2 (truecolor), the tRNS chunk contains a
single RGB color value, stored in the format:

Red: 2 bytes, range 0 .. (2^bitdepth)-1
Green: 2 bytes, range 0 .. (2^bitdepth)-1
Blue: 2 bytes, range 0 .. (2^bitdepth)-1

(For consistency, 2 bytes per sample are used regardless of the image
bit depth.)
Pixels of the specified color value are to be treated as transparent
(equivalent to alpha value 0); all other pixels are to be treated as
fully opaque (alpha value (2^bitdepth)-1).

tRNS is prohibited for color types 4 and 6, since a full
alpha channel is already present in those cases.

Note: when dealing with 16-bit grayscale or truecolor data, it is important

PNG 32 / 101

to compare both bytes of the sample values to determine whether a
pixel is transparent. Although decoders may drop the low-order byte
of the samples for display, this must not occur until after the data
has been tested for transparency. For example, if the grayscale level
0x0001 is specified to be transparent, it would be incorrect to compare
only the high-order byte and decide that 0x0002 is also transparent.

When present, the tRNS chunk must precede the first
IDAT chunk, and must follow the PLTE chunk, if any.

1.34 4.2.10. zTXt Compressed textual data

4.2.10. zTXt

The zTXt chunk contains textual data, just as tEXt
does; however, zTXt takes advantage of compression.
zTXt and tEXt chunks are semantically equivalent,
but zTXt is recommended for storing large blocks of text.

A zTXt chunk contains:

Keyword: 1-79 bytes (character string)
Null separator: 1 byte
Compression method: 1 byte
Compressed text: n bytes

The keyword and null separator are exactly the same as in the
tEXt chunk. Note that the keyword is not compressed.
The compression method byte identifies the compression method
used in this zTXt chunk. The only value presently defined
for it is 0 (deflate/inflate
compression). The compression method byte is followed by a compressed
datastream that makes up the remainder of the chunk. For compression
method 0, this datastream adheres to the zlib datastream format
(see

Deflate/Inflate Compression, Chapter 5
).

Decompression of this datastream yields Latin-1 text that is
identical to the text that would be stored in an equivalent
tEXt chunk.

Any number of zTXt and tEXt chunks can appear in the
same file. See the preceding definition of the tEXt chunk
for the predefined keywords and the recommended format of the text.

See Recommendations for Encoders:

Text chunk processing (Section 9.7)
,

and Recommendations for Decoders:

Text chunk processing (Section 10.11)
.

PNG 33 / 101

1.35 4.3. Summary of standard chunks

4.3. Summary of standard chunks

This table summarizes some properties of the standard chunk types.

Critical chunks (must appear in this order, except PLTE
is optional):

Name Multiple Ordering constraints
OK?

IHDR No Must be first
PLTE No Before IDAT
IDAT Yes Multiple IDATs must be consecutive
IEND No Must be last

Ancillary chunks (need not appear in this order):

Name Multiple Ordering constraints
OK?

cHRM No Before PLTE and IDAT
gAMA No Before PLTE and IDAT
sBIT No Before PLTE and IDAT
bKGD No After PLTE; before IDAT
hIST No After PLTE; before IDAT
tRNS No After PLTE; before IDAT
pHYs No Before IDAT
tIME No None
tEXt Yes None
zTXt Yes None

Standard keywords for tEXt and zTXt chunks:

Title Short (one line) title or caption for image
Author Name of image’s creator
Description Description of image (possibly long)
Copyright Copyright notice
Creation Time Time of original image creation
Software Software used to create the image
Disclaimer Legal disclaimer
Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion from

GIF comment

1.36 4.4. Additional chunk types

4.4. Additional chunk types

Additional public PNG chunk types are defined in the document

PNG 34 / 101

"PNG Special-Purpose Public Chunks" ([PNG-EXTENSIONS]
ftp://ftp.uu.net/graphics/png/documents/pngextensions.html).
Chunks described there are expected to be less widely supported
than those defined in this specification. However, application
authors are encouraged to use those chunk types whenever appropriate
for their applications. Additional chunk types can be proposed for
inclusion in that list by contacting the PNG specification maintainers
at png-info@uunet.uu.net or at png-group@w3.org.

New public chunks will only be registered if they are of use
to others and do not violate the design philosophy of PNG. Chunk
registration is not automatic, although it is the intent of the
authors that it be straightforward when a new chunk of potentially
wide application is needed. Note that the creation of new critical
chunk types is discouraged unless absolutely necessary.

Applications can also use private chunk types to carry data that is
not of interest to other applications.
See Recommendations for Encoders:

Use of private chunks (Section 9.8)
.

Decoders must be prepared to encounter unrecognized public or private
chunk type codes. Unrecognized chunk types must be handled as
described in

Chunk naming conventions (Section 3.3)
.

1.37 5. Deflate/Inflate Compression

5. Deflate/Inflate Compression

PNG compression method 0 (the only compression method presently defined
for PNG) specifies deflate/inflate compression with a 32K sliding window.
Deflate compression is an LZ77 derivative used in zip, gzip, pkzip and
related programs. Extensive research has been done supporting its
patent-free status. Portable C implementations are freely available.

Deflate-compressed datastreams within PNG are stored in the "zlib"
format, which has the structure:

Compression method/flags code: 1 byte
Additional flags/check bits: 1 byte
Compressed data blocks: n bytes
Check value: 4 bytes

Further details on this format are given in the zlib specification
([RFC-1950] ftp://ds.internic.net/rfc/rfc1950.txt).

For PNG compression method 0, the zlib compression method/flags code must
specify method code 8 ("deflate" compression) and an LZ77 window size

PNG 35 / 101

of not more than 32K. Note that the zlib compression method number is
not the same as the PNG compression method number. The additional flags
must not specify a preset dictionary.

The compressed data within the zlib datastream is stored as a series
of blocks, each of which can represent raw (uncompressed) data,
LZ77-compressed data encoded with fixed Huffman codes, or
LZ77-compressed data encoded with custom Huffman codes. A marker bit
in the final block identifies it as the last block, allowing the
decoder to recognize the end of the compressed datastream. Further
details on the compression algorithm and the encoding are given in
the deflate specification ([RFC-1951]
ftp://ds.internic.net/rfc/rfc1951.txt).

The check value stored at the end of the zlib datastream is calculated
on the uncompressed data represented by the datastream. Note that the
algorithm used is not the same as the CRC calculation used for PNG
chunk check values. The zlib check value is useful mainly as a
cross-check that the deflate and inflate algorithms are implemented
correctly. Verifying the chunk CRCs provides adequate confidence that
the PNG file has been transmitted undamaged.

In a PNG file, the concatenation of the contents of all the
IDAT chunks makes up a zlib datastream as specified above.
This datastream decompresses to filtered image data as described
elsewhere in this document.

It is important to emphasize that the boundaries between IDAT
chunks are arbitrary and can fall anywhere in the zlib datastream.
There is not necessarily any correlation between IDAT chunk
boundaries and deflate block boundaries or any other feature of the
zlib data. For example, it is entirely possible for the terminating
zlib check value to be split across IDAT chunks.

In the same vein,
there is no required correlation between the structure of the
image data (i.e., scanline boundaries) and deflate block boundaries
or IDAT chunk boundaries. The complete image data is
represented by a single zlib datastream that is stored in some number
of IDAT chunks; a decoder that assumes any more than this is
incorrect. (Of course, some encoder implementations may
emit files in which some of these structures are indeed
related. But decoders cannot rely on this.)

PNG also uses zlib datastreams in zTXt chunks. In a
zTXt chunk, the remainder of the chunk following the
compression method byte is a zlib datastream as specified above.
This datastream decompresses to the user-readable text described
by the chunk’s keyword. Unlike the image data, such datastreams
are not split across chunks; each zTXt chunk contains an
independent zlib datastream.

Additional documentation and portable C code for deflate and inflate
are available from the Info-ZIP archives at
ftp://ftp.uu.net/pub/archiving/zip/ .

PNG 36 / 101

1.38 6. Filter Algorithms

6. Filter Algorithms

This chapter describes the filter algorithms that can be
applied before compression. The purpose of these filters is to
prepare the image data for optimum compression.

6.1. Filter types

6.2. Filter type 0: None

6.3. Filter type 1: Sub

6.4. Filter type 2: Up

6.5. Filter type 3: Average

6.6. Filter type 4: Paeth

1.39 6.1. Filter types

6.1. Filter types

PNG filter method 0 defines five basic filter types:

Type Name

0 None
1 Sub
2 Up
3 Average
4 Paeth

(Note that filter method 0 in IHDR specifies exactly
this set of five filter types. If the set of filter types is ever
extended, a different filter method number will be assigned to the
extended set, so that decoders need not decompress the data to
discover that it contains unsupported filter types.)

The encoder can choose which of these filter algorithms to apply on a
scanline-by-scanline basis. In the image data sent to the compression
step, each scanline is preceded by a filter type byte that specifies
the filter algorithm used for that scanline.

Filtering algorithms are applied to bytes, not to pixels,
regardless of the bit depth or color type of the image. The filtering
algorithms work on the byte sequence formed by a scanline that has
been represented as described in

Image layout (Section 2.3)
.

If the image includes an alpha channel, the alpha data is filtered

PNG 37 / 101

in the same way as the image data.

When the image is interlaced, each pass of the interlace pattern is
treated as an independent image for filtering purposes. The filters
work on the byte sequences formed by the pixels actually transmitted
during a pass, and the "previous scanline" is the one previously
transmitted in the same pass, not the one adjacent in the complete
image. Note that the subimage transmitted in any one pass is always
rectangular, but is of smaller width and/or height than the complete
image. Filtering is not applied when this subimage is empty.

For all filters, the bytes "to the left of" the first pixel in a
scanline must be treated as being zero. For filters that refer to the
prior scanline, the entire prior scanline must be treated as being
zeroes for the first scanline of an image (or of a pass of an
interlaced image).

To reverse the effect of a filter, the decoder must use the decoded
values of the prior pixel on the same line, the pixel immediately
above the current pixel on the prior line, and the pixel just to the
left of the pixel above. This implies that at least one scanline’s
worth of image data will have to be stored by the decoder at all times.
Even though some filter types do not refer to the prior
scanline, the decoder will always need to store each scanline as it is decoded,
since the next scanline might use a filter that refers to it.

PNG imposes no restriction on which filter types can be applied to an
image. However, the filters are not equally effective on all types
of data.
See Recommendations for Encoders:

Filter selection (Section 9.6)
.

See also Rationale:

Filtering (Section 12.9)
.

1.40 6.2. Filter type 0: None

6.2. Filter type: None

With the None filter, the scanline is transmitted unmodified;
it is only necessary to insert a filter type byte before the data.

1.41 6.3. Filter type 1: Sub

6.3. Filter type 1: Sub

The Sub filter transmits the difference between each byte and the

PNG 38 / 101

value of the corresponding byte of the prior pixel.

To compute the Sub filter, apply the following formula to each byte of
the scanline:

Sub(x) = Raw(x) - Raw(x-bpp)

where x ranges from zero to the number of bytes representing
the scanline minus one, Raw(x) refers to the raw data
byte at that byte position in the scanline, and
bpp is defined as the number of bytes per complete pixel,
rounding up to one. For example, for color type 2 with a bit
depth of 16, bpp is equal to 6 (three samples, two bytes per
sample); for color type 0 with a bit depth of 2, bpp is equal to 1
(rounding up); for color type 4 with a bit depth of 16, bpp is equal
to 4 (two-byte grayscale sample, plus two-byte alpha sample).

Note this computation is done for each byte,
regardless of bit depth. In a 16-bit image, each MSB is predicted
from the preceding MSB and each LSB from the preceding LSB,
because of the way that bpp is defined.

Unsigned arithmetic modulo 256 is used, so
that both the inputs and outputs fit into bytes. The sequence of
Sub values is transmitted as the filtered scanline.

For all x < 0, assume Raw(x) = 0.

To reverse the effect of the Sub filter after decompression,
output the following value:

Sub(x) + Raw(x-bpp)

(computed mod 256), where Raw refers to the bytes already
decoded.

1.42 6.4. Filter type 2: Up

6.4. Filter type 2: Up

The Up filter is just like the Sub filter except that the pixel
immediately above the current pixel, rather than just to its left,
is used as the predictor.

To compute the Up filter, apply the following formula to each byte of
the scanline:

Up(x) = Raw(x) - Prior(x)

where x ranges from zero to the number of bytes representing
the scanline minus one, Raw(x) refers to the raw data
byte at that byte position in the scanline, and
Prior(x) refers to the unfiltered bytes of the prior
scanline.

PNG 39 / 101

Note this is done for each byte, regardless of bit
depth. Unsigned arithmetic modulo 256 is used, so that both the
inputs and outputs fit into bytes. The sequence of Up
values is transmitted as the filtered scanline.

On the first scanline of an image (or of a
pass of an interlaced image), assume Prior(x) = 0 for all x.

To reverse the effect of the Up filter after decompression,
output the following value:

Up(x) + Prior(x)

(computed mod 256), where Prior refers to the decoded bytes
of the prior scanline.

1.43 6.5. Filter type 3: Average

6.5. Filter type 3: Average

The Average filter uses the average of the two neighboring pixels
(left and above) to predict the value of a pixel.

To compute the Average filter,
apply the following formula to each byte of the scanline:

Average(x) = Raw(x) - floor((Raw(x-bpp)+Prior(x))/2)

where x ranges from zero to the number of bytes representing
the scanline minus one, Raw(x) refers to the raw data
byte at that byte position in the scanline,
Prior(x) refers to the unfiltered bytes of the prior
scanline, and bpp is defined as for the Sub filter.

Note this is done for each byte, regardless of bit
depth. The sequence of Average
values is transmitted as the filtered scanline.

The subtraction of the predicted value from the raw byte must be done
modulo 256, so that both the inputs and outputs fit into bytes.
However, the sum Raw(x-bpp)+Prior(x) must be formed without
overflow (using at least nine-bit arithmetic). floor()
indicates that the result of the division is rounded to the next lower
integer if fractional; in other words, it is an integer division or
right shift operation.

For all x < 0, assume Raw(x) = 0.
On the first scanline of an image (or of a
pass of an interlaced image), assume Prior(x) = 0 for all x.

To reverse the effect of the Average filter after decompression,
output the following value:

Average(x) + floor((Raw(x-bpp)+Prior(x))/2)

PNG 40 / 101

where the result is computed mod 256, but the prediction is calculated
in the same way as for encoding. Raw refers to the bytes
already decoded, and Prior refers to the decoded bytes of the
prior scanline.

1.44 6.6. Filter type 4: Paeth

6.6. Filter type 4: Paeth

The Paeth filter computes a simple linear function of the three
neighboring pixels (left, above, upper left), then chooses as
predictor the neighboring pixel closest to the computed value.
This technique is due to Alan W. Paeth [PAETH].

To compute the Paeth filter,
apply the following formula to each byte of the scanline:

Paeth(x) = Raw(x) - PaethPredictor(Raw(x-bpp), Prior(x),
Prior(x-bpp))

where x ranges from zero to the number of bytes representing
the scanline minus one, Raw(x) refers to the raw data
byte at that byte position in the scanline,
Prior(x) refers to the unfiltered bytes of the prior
scanline, and bpp is defined as for the Sub filter.

Note this is done for each byte, regardless of bit
depth. Unsigned arithmetic modulo 256 is used, so that both the
inputs and outputs fit into bytes. The sequence of Paeth
values is transmitted as the filtered scanline.

The PaethPredictor function is defined by the following pseudocode:

function PaethPredictor (a, b, c)
begin

; a = left, b = above, c = upper left
p := a + b - c ; initial estimate
pa := abs(p - a) ; distances to a, b, c
pb := abs(p - b)
pc := abs(p - c)
; return nearest of a,b,c,
; breaking ties in order a,b,c.
if pa <= pb AND pa <= pc then return a
else if pb <= pc then return b
else return c

end

The calculations within the PaethPredictor function must be performed
exactly, without overflow. Arithmetic modulo 256
is to be used only for the final step of subtracting the function
result from the target byte value.

Note that the order in which ties are broken is critical and must
not be altered. The tie break order is: pixel to the left,
pixel above, pixel to the upper left. (This order differs from that

PNG 41 / 101

given in Paeth’s article.)

For all x < 0, assume Raw(x) = 0 and
Prior(x) = 0. On the first scanline of an image (or of a
pass of an interlaced image), assume Prior(x) = 0 for all x.

To reverse the effect of the Paeth filter after decompression,
output the following value:

Paeth(x) + PaethPredictor(Raw(x-bpp), Prior(x), Prior(x-bpp))

(computed mod 256), where Raw and Prior refer to
bytes already decoded. Exactly the same PaethPredictor function is
used by both encoder and decoder.

1.45 7. Chunk Ordering Rules

7. Chunk Ordering Rules

To allow new chunk types to be added to PNG, it is necessary to
establish rules about the ordering requirements for all chunk types.
Otherwise a PNG editing program cannot know what to do when it
encounters an unknown chunk.

We define a "PNG editor" as a program that modifies a PNG file and
wishes to preserve as much as possible of the ancillary information in
the file. Two examples of PNG editors are a program that adds or modifies
text chunks, and a program that adds a suggested palette to a truecolor
PNG file. Ordinary image editors are not PNG editors in this
sense, because they usually discard all unrecognized information while
reading in an image. (Note: we strongly encourage programs handling PNG
files to preserve ancillary information whenever possible.)

As an example of possible problems, consider a hypothetical new
ancillary chunk type that is safe-to-copy and is required to appear
after PLTE if PLTE is present. If our program to
add a suggested PLTE does not recognize this new
chunk, it may insert PLTE in the wrong place, namely after
the new chunk. We could prevent such problems by requiring PNG
editors to discard all unknown chunks, but that is a very unattractive
solution. Instead, PNG requires ancillary chunks not to have ordering
restrictions like this.

To prevent this type of problem while allowing for future extension,
we put some constraints on both the behavior of PNG editors and the
allowed ordering requirements for chunks.

7.1. Behavior of PNG editors

7.2. Ordering of ancillary chunks

7.3. Ordering of critical chunks

PNG 42 / 101

1.46 7.1. Behavior of PNG editors

7.1. Behavior of PNG editors

The rules for PNG editors are:

- When copying an unknown unsafe-to-copy ancillary chunk, a PNG editor
must not move the chunk relative to any critical chunk. It can relocate
the chunk freely relative to other ancillary chunks that occur between
the same pair of critical chunks. (This is well defined since the
editor must not add, delete, modify, or reorder critical chunks if it is
preserving unknown unsafe-to-copy chunks.)

- When copying an unknown safe-to-copy ancillary chunk, a PNG editor must
not move the chunk from before IDAT to after IDAT or
vice versa. (This is well defined because IDAT is always
present.) Any other reordering is permitted.

- When copying a known ancillary chunk type, an editor need
only honor the specific chunk ordering rules that exist for that chunk
type. However, it can always choose to apply the above general rules
instead.

- PNG editors must give up on encountering an unknown critical chunk
type, because there is no way to be certain that a valid file will
result from modifying a file containing such a chunk. (Note that
simply discarding the chunk is not good enough, because it might
have unknown implications for the interpretation of other chunks.)

These rules are expressed in terms of copying chunks from an input
file to an output file, but they apply in the obvious way if a PNG
file is modified in place.

See also

Chunk naming conventions (Section 3.3)
.

1.47 7.2. Ordering of ancillary chunks

7.2. Ordering of ancillary chunks

The ordering rules for an ancillary chunk type cannot be any stricter
than this:

- Unsafe-to-copy chunks can have ordering requirements relative to
critical chunks.

- Safe-to-copy chunks can have ordering requirements relative to
IDAT.

The actual ordering rules for any particular ancillary chunk type may
be weaker. See for example the ordering rules for the standard

PNG 43 / 101

ancillary chunk types
(

Summary of standard chunks, Section 4.3
).

Decoders must not assume more about the positioning of any
ancillary chunk than is specified by the chunk ordering rules.
In particular, it is never valid to assume that a specific ancillary
chunk type occurs with any particular positioning relative to other
ancillary chunks. (For example, it is unsafe to assume that your
private ancillary chunk occurs immediately before IEND.
Even if your application always writes it there, a PNG editor might
have inserted some other ancillary chunk after it. But you can
safely assume that your chunk will remain somewhere between
IDAT and IEND.)

1.48 7.3. Ordering of critical chunks

7.3. Ordering of critical chunks

Critical chunks can have arbitrary ordering requirements, because PNG
editors are required to give up if they encounter unknown critical
chunks. For example, IHDR has the special ordering rule that
it must always appear first. A PNG editor, or indeed any PNG-writing
program, must know and follow the ordering rules for any critical
chunk type that it can emit.

1.49 8. Miscellaneous Topics

8. Miscellaneous Topics

8.1. File name extension

8.2. Internet media type

8.3. Macintosh file layout

8.4. Multiple-image extension

8.5. Security considerations

1.50 8.1. File name extension

8.1. File name extension

On systems where file names customarily include an extension

PNG 44 / 101

signifying file type, the extension ".png" is recommended for
PNG files. Lower case ".png" is preferred if file names are
case-sensitive.

1.51 8.2. Internet media type

8.2. Internet media type

The PNG authors intend to register "image/png" as the
Internet Media Type for PNG
([RFC-1521] ftp://ds.internic.net/rfc/rfc1521.txt ,
[RFC-1590] ftp://ds.internic.net/rfc/rfc1590.txt).
At the date of this document, the media type registration process
had not been completed.
It is recommended that implementations also recognize the interim
media type "image/x-png".

1.52 8.3. Macintosh file layout

8.3. Macintosh file layout

In the Apple Macintosh system, the following conventions are
recommended:

- The four-byte file type code for PNG files is "PNGf".
(This code has been registered with Apple for PNG files.)
The creator code will vary depending on the creating application.

- The contents of the data fork must be a PNG file exactly
as described in the rest of this specification.

- The contents of the resource fork are unspecified. It may
be empty or may contain application-dependent resources.

- When transferring a Macintosh PNG file to a non-Macintosh
system, only the data fork should be transferred.

1.53 8.4. Multiple-image extension

8.4. Multiple-image extension

PNG itself is strictly a single-image format. However, it may be
necessary to store multiple images within one file; for example, this
is needed to convert some GIF files. In the future, a multiple-image
format based on PNG may be defined. Such a format will be considered
a separate file format and will have a different signature.
PNG-supporting applications may or may not choose to support the
multiple-image format.

See Rationale:

Why not these features? (Section 12.3)
.

PNG 45 / 101

1.54 8.5. Security considerations

8.5. Security considerations

A PNG file or datastream is composed of a collection of explicitly typed
"chunks". Chunks whose contents are defined by the specification
could actually contain anything, including malicious code. But there is
no known risk that such malicious code could be executed
on the recipient’s computer as a result of decoding the PNG image.

The possible security risks associated with future chunk types cannot
be specified at this time. Security issues will be considered when
evaluating chunks proposed for registration as public chunks. There
is no additional security risk associated with unknown or
unimplemented chunk types, because such chunks will be ignored,
or at most be copied into another PNG file.

The tEXt and zTXt chunks contain data that is meant
to be displayed as plain text. It is possible that if the decoder
displays such text without filtering out control characters,
especially the ESC (escape) character, certain systems or terminals
could behave in undesirable and insecure ways. We recommend that
decoders filter out control characters to avoid this risk; see
Recommendations for Decoders:

Text chunk processing (Section 10.11)
.

Because every chunk’s length is available at its beginning, and because
every chunk has a CRC trailer, there is a very robust defense against
corrupted data and against fraudulent chunks that attempt to overflow
the decoder’s buffers. Also, the PNG signature bytes provide early
detection of common file transmission errors.

A decoder that fails to check CRCs could be subject to data corruption.
The only likely consequence of such corruption is incorrectly displayed
pixels within the image. Worse things might happen if the CRC of the
IHDR chunk is not checked and the width or height fields are
corrupted. See Recommendations for Decoders:

Error checking (Section 10.1)
.

A poorly written decoder might be subject to buffer overflow, because
chunks can be extremely large, up to (2^31)-1 bytes long. But
properly written decoders will handle large chunks without difficulty.

1.55 9. Recommendations for Encoders

PNG 46 / 101

9. Recommendations for Encoders

This chapter gives some recommendations for encoder behavior. The
only absolute requirement on a PNG encoder is that it produce files
that conform to the format specified in the preceding chapters.
However, best results will usually be achieved by following these
recommendations.

9.1. Sample depth scaling

9.2. Encoder gamma handling

9.3. Encoder color handling

9.4. Alpha channel creation

9.5. Suggested palettes

9.6. Filter selection

9.7. Text chunk processing

9.8. Use of private chunks

9.9. Private type and method codes

1.56 9.1. Sample depth scaling

9.1. Sample depth scaling

When encoding input samples that have a sample depth that cannot be directly
represented in PNG, the encoder must scale the samples up to a sample
depth that is allowed by PNG. The most accurate scaling method is the
linear equation

output = ROUND(input * MAXOUTSAMPLE / MAXINSAMPLE)

where the input samples range from 0 to MAXINSAMPLE and the outputs
range from 0 to MAXOUTSAMPLE (which is (2^sampledepth)-1).

A close approximation to the linear scaling method can be achieved by
"left bit replication", which is shifting the valid bits to begin in
the most significant bit and repeating the most significant bits into
the open bits. This method is often faster to compute than linear
scaling. As an example, assume that 5-bit samples are being scaled up
to 8 bits. If the source sample value is 27 (in the range from 0-31),
then the original bits are:

4 3 2 1 0

1 1 0 1 1

PNG 47 / 101

Left bit replication gives a value of 222:

7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 0
|=======| |===|

| Leftmost Bits Repeated to Fill Open Bits
|

Original Bits

which matches the value computed by the linear equation. Left bit
replication usually gives the same value as linear scaling, and is
never off by more than one.

A distinctly less accurate approximation is obtained by simply
left-shifting the input value and filling the low order bits with
zeroes. This scheme cannot reproduce white exactly, since it does
not generate an all-ones maximum value; the net effect is to darken
the image slightly. This method is not recommended in general, but
it does have the effect of improving compression, particularly when
dealing with greater-than-eight-bit sample depths. Since the relative
error introduced by zero-fill scaling is small at high sample depths,
some encoders may choose to use it. Zero-fill must
not be used for alpha channel data, however, since
many decoders will special-case alpha values of all zeroes and all ones.
It is important to represent both those values exactly in the scaled
data.

When the encoder writes an sBIT chunk, it is required to do
the scaling in such a way that the high-order bits of the stored
samples match the original data. That is, if the sBIT chunk
specifies a sample depth of S, the high-order S bits of the stored data
must agree with the original S-bit data values. This allows decoders
to recover the original data by shifting right. The added low-order
bits are not constrained. Note that all the above scaling methods
meet this restriction.

When scaling up source data, it is recommended that the low-order bits
be filled consistently for all samples; that is, the same source value
should generate the same sample value at any pixel position. This
improves compression by reducing the number of distinct sample values.
However, this is not a requirement, and some encoders may choose not
to follow it. For example, an encoder might instead dither the
low-order bits, improving displayed image quality at the price of
increasing file size.

In some applications the original source data may have a range that is
not a power of 2. The linear scaling equation still works for this
case, although the shifting methods do not. It is recommended that an
sBIT chunk not be written for such images, since
sBIT suggests that the original data range was exactly
0..2^S-1.

1.57 9.2. Encoder gamma handling

PNG 48 / 101

9.2. Encoder gamma handling

See
Gamma Tutorial (Chapter 13)
if you

aren’t already familiar with gamma issues.

Proper handling of gamma encoding and the gAMA chunk in an
encoder depends on the prior history of the sample values and on
whether these values have already been quantized to integers.

If the encoder has access to sample intensity values in floating-point
or high-precision integer form (perhaps from a computer image
renderer), then it is recommended that the encoder perform its own
gamma encoding before quantizing the data to integer values
for storage in the file. Applying gamma encoding at this stage
results in images with fewer banding artifacts at a given sample
depth, or allows smaller samples while retaining the same visual quality.

A linear intensity level, expressed as a floating-point value in the
range 0 to 1, can be converted to a gamma-encoded sample value by

sample = ROUND((intensity ^ encoder_gamma) * MAXSAMPLE)

The file_gamma value to be written in the PNG gAMA chunk is
the same as encoder_gamma in this equation, since we are assuming the
initial intensity value is linear (in effect, camera_gamma is 1.0).

If the image is being written to a file only, the encoder_gamma value
can be selected somewhat arbitrarily. Values of 0.45 or 0.5 are
generally good choices because they are common in video systems, and
so most PNG decoders should do a good job displaying such images.

Some image renderers may simultaneously write the image to a PNG file
and display it on-screen. The displayed pixels should be gamma
corrected for the display system and viewing conditions in use, so
that the user sees a proper representation of the intended scene.
An appropriate gamma correction value is

screen_gc = viewing_gamma / display_gamma

If the renderer wants to write the same gamma-corrected sample values
to the PNG file, avoiding a separate gamma-encoding step for file
output, then this screen_gc value should be written in the
gAMA chunk. This will allow a PNG decoder to reproduce what
the file’s originator saw on screen during rendering (provided the
decoder properly supports arbitrary values in a gAMA chunk).

However, it is equally reasonable for a renderer to apply gamma
correction for screen display using a gamma appropriate to the
viewing conditions, and to separately gamma-encode the sample
values for file storage using a standard value of gamma such as
0.5. In fact, this is preferable, since some PNG decoders may not
accurately display images with unusual gAMA values.

Computer graphics renderers often do not perform gamma encoding,

PNG 49 / 101

instead making sample values directly proportional to scene light
intensity. If the PNG encoder receives sample values that have
already been quantized into linear-light integer values, there is no
point in doing gamma encoding on them; that would just result in
further loss of information. The encoder should just write the sample
values to the PNG file. This "linear" sample encoding is equivalent
to gamma encoding with a gamma of 1.0, so graphics programs that
produce linear samples should always emit a gAMA chunk
specifying a gamma of 1.0.

When the sample values come directly from a piece of hardware, the
correct gAMA value is determined by the gamma characteristic
of the hardware. In the case of video digitizers ("frame grabbers"),
gAMA should be 0.45 or 0.5 for NTSC (possibly less for PAL or
SECAM) since video camera transfer functions are standardized.
Image scanners are less predictable. Their output samples may be
linear (gamma 1.0) since CCD sensors themselves are linear, or the
scanner hardware may have already applied gamma correction designed to
compensate for dot gain in subsequent printing (gamma of about 0.57),
or the scanner may have corrected the samples for display on a CRT
(gamma of 0.4-0.5). You will need to refer to the scanner’s manual,
or even scan a calibrated gray wedge, to determine what a particular
scanner does.

File format converters generally should not attempt to convert
supplied images to a different gamma. Store the data in the PNG file
without conversion, and record the source gamma if it is known. Gamma
alteration at file conversion time causes re-quantization of the set of
intensity levels that are represented, introducing further roundoff
error with little benefit. It’s almost always better to just copy the
sample values intact from the input to the output file.

In some cases, the supplied image may be in an image format (e.g.,
TIFF) that can describe the gamma characteristic of the image. In
such cases, a file format converter is strongly encouraged to write a
PNG gAMA chunk that corresponds to the known gamma of the
source image. Note that some file formats specify the gamma of the
display system, not the camera. If the input file’s gamma value is
greater than 1.0, it is almost certainly a display system gamma, and
you should use its reciprocal for the PNG gAMA.

If the encoder or file format converter does not know how an image was
originally created, but does know that the image has been displayed
satisfactorily on a display with gamma display_gamma under lighting
conditions where a particular viewing_gamma is appropriate, then the
image can be marked as having the file_gamma:

file_gamma = viewing_gamma / display_gamma

This will allow viewers of the PNG file to see the same image that the
person running the file format converter saw. Although this may not
be precisely the correct value of the image gamma, it’s better to
write a gAMA chunk with an approximately right value than to
omit the chunk and force PNG decoders to guess at an appropriate
gamma.

On the other hand, if the image file is being converted as part of a

PNG 50 / 101

"bulk" conversion, with no one looking at each image, then it is
better to omit the gAMA chunk entirely. If the image gamma
has to be guessed at, leave it to the decoder to do the guessing.

Gamma does not apply to alpha samples; alpha is always represented
linearly.

See also Recommendations for Decoders:

Decoder gamma handling (Section 10.5)
.

1.58 9.3. Encoder color handling

9.3. Encoder color handling

See
Color Tutorial (Chapter 14)
if you aren’t already familiar with color issues.

If it is possible for the encoder to determine the chromaticities of
the source display primaries, or to make a strong guess based on the
origin of the image or the hardware running it, then the encoder
is strongly encouraged to output the cHRM chunk. If it does
so, the gAMA chunk should also be written; decoders can do
little with cHRM if gAMA is missing.

Video created with recent video equipment probably uses the CCIR 709
primaries and D65 white point [ITU-BT709], which are:

R G B White
x 0.640 0.300 0.150 0.3127
y 0.330 0.600 0.060 0.3290

An older but still very popular video standard is SMPTE-C [SMPTE-170M]:

R G B White
x 0.630 0.310 0.155 0.3127
y 0.340 0.595 0.070 0.3290

The original NTSC color primaries have not been used in decades.
Although you may still find the NTSC numbers listed in standards
documents, you won’t find any images that actually use them.

Scanners that produce PNG files as output should insert the filter
chromaticities into a cHRM chunk and the camera_gamma into a
gAMA chunk.

In the case of hand-drawn or digitally edited images, you have to
determine what monitor they were viewed on when being produced. Many
image editing programs allow you to specify what type of monitor you are
using. This is often because they are working in some device-independent
space internally. Such programs have enough information to
write valid cHRM and gAMA chunks, and should do

PNG 51 / 101

so automatically.

If the encoder is compiled as a portion of a computer image renderer
that performs full-spectral rendering, the monitor values that were
used to convert from the internal device-independent color space to RGB
should be written into the cHRM chunk. Any colors that are
outside the gamut of the chosen RGB device should be clipped or otherwise
constrained to be within the gamut; PNG does not store out of gamut colors.

If the computer image renderer performs calculations directly in
device-dependent RGB space, a cHRM chunk should not be written
unless the scene description and rendering parameters have been adjusted
to look good on a particular monitor. In that case, the data for that
monitor (if known) should be used to construct a cHRM chunk.

There are often cases where an image’s exact origins are unknown,
particularly if it began life in some other format. A few image formats
store calibration information, which can be used to fill in the
cHRM chunk. For example, all PhotoCD images use the CCIR 709
primaries and D65 whitepoint, so these values can be written into the
cHRM chunk when converting a PhotoCD file. PhotoCD also uses
the SMPTE-170M transfer function, which is closely approximated by a
gAMA of 0.5.
(PhotoCD can store colors outside the RGB gamut, so the image data
will require gamut mapping before writing to PNG format.) TIFF 6.0
files can optionally store calibration information, which if present
should be used to construct the cHRM chunk. GIF and most
other formats do not store any calibration information.

It is not recommended that file format converters
attempt to convert supplied images to a different RGB color space.
Store the data in the PNG file without conversion, and record the source
primary chromaticities if they are known. Color space
transformation at file conversion time is a bad idea because of gamut
mismatches and rounding errors. As with gamma conversions, it’s
better to store the data losslessly and incur at most one conversion
when the image is finally displayed.

See also Recommendations for Decoders:

Decoder color handling (Section 10.6)
.

1.59 9.4. Alpha channel creation

9.4. Alpha channel creation

The alpha channel can be regarded either as a mask that temporarily
hides transparent parts of the image, or as a means for constructing a
non-rectangular image. In the first case, the color values of fully
transparent pixels should be preserved for future use. In the second
case, the transparent pixels carry no useful data and are simply there
to fill out the rectangular image area required by PNG. In this case,
fully transparent pixels should all be assigned the same color value

PNG 52 / 101

for best compression.

Image authors should keep in mind the possibility that a decoder will ignore
transparency control. Hence, the colors assigned to transparent pixels
should be reasonable background colors whenever feasible.

For applications that do not require a full alpha channel,
or cannot afford the price in compression efficiency,
the tRNS transparency chunk is also available.

If the image has a known background color, this color should be
written in the bKGD chunk. Even decoders that ignore
transparency may use the bKGD color to fill unused screen area.

If the original image has premultiplied (also called "associated")
alpha data, convert it to PNG’s non-premultiplied format by dividing
each sample value by the corresponding alpha value, then multiplying by
the maximum value for the image bit depth, and rounding to the nearest
integer. In valid premultiplied data, the sample values never exceed
their corresponding alpha values, so the result of the division should
always be in the range 0 to 1. If the alpha value is zero, output
black (zeroes).

1.60 9.5. Suggested palettes

9.5. Suggested palettes

A PLTE chunk can appear in truecolor PNG files. In such
files, the chunk is not an essential part of the image data, but
simply represents a suggested palette that viewers may use to present
the image on indexed-color display hardware. A suggested palette is
of no interest to viewers running on truecolor hardware.

If an encoder chooses to provide a suggested palette, it is
recommended that a hIST chunk also be written to indicate the
relative importance of the palette entries. The histogram values are
most easily computed as "nearest neighbor" counts, that is, the
approximate usage of each palette entry if no dithering is applied.
(These counts will often be available for free as a consequence of
developing the suggested palette.)

For images of color type 2 (truecolor without alpha channel), it is
recommended that the palette and histogram be computed with reference
to the RGB data only, ignoring any transparent-color specification.
If the file uses transparency (has a tRNS chunk), viewers
can easily adapt the resulting palette for use with their intended
background color. They need only replace the palette entry closest to
the tRNS color with their background color (which
may or may not match the file’s bKGD color, if any).

For images of color type 6 (truecolor with alpha channel), it is
recommended that a bKGD chunk appear and that the palette and
histogram be computed with reference to the image as it would appear
after compositing against the specified background color. This
definition is necessary to ensure that useful palette entries are

PNG 53 / 101

generated for pixels having fractional alpha values. The resulting
palette will probably only be useful to viewers that present the image
against the same background color. It is recommended that PNG editors
delete or recompute the palette if they alter or remove the
bKGD chunk in an image of color type 6. If PLTE
appears without bKGD in an image of color type 6, the
circumstances under which the palette was computed are unspecified.

1.61 9.6. Filter selection

9.6. Filter selection

For images of color type 3 (indexed color), filter type 0 (None)
is usually the most effective. Note that color images with 256
or fewer colors should almost always be stored in indexed color
format; truecolor format is likely to be much larger.

Filter type 0 is also recommended for images of bit depths less than
8. For low-bit-depth grayscale images, it may be a net win to expand
the image to 8-bit representation and apply filtering, but this is rare.

For truecolor and grayscale images, any of the five filters may prove
the most effective. If an encoder uses a fixed filter,
the Paeth filter is most likely to be the best.

For best compression of truecolor and grayscale images, we recommend
an adaptive filtering approach in which a filter is chosen for each
scanline. The following simple heuristic has performed well in early
tests: compute the output scanline using all five filters, and select
the filter that gives the smallest sum of absolute values of outputs.
(Consider the output bytes as signed differences for this test.) This
method usually outperforms any single fixed filter choice. However,
it is likely that much better heuristics will be found as
more experience is gained with PNG.

Filtering according to these recommendations is effective on
interlaced as well as noninterlaced images.

1.62 9.7. Text chunk processing

9.7. Text chunk processing

A nonempty keyword must be provided for each text chunk.
The generic keyword "Comment" can be used if no better description of
the text is available. If a user-supplied keyword is used, be sure to
check that it meets the restrictions on keywords.

PNG text strings are expected to use the Latin-1 character set.
Encoders should avoid storing characters that are not defined in
Latin-1, and should provide character code remapping if the local
system’s character set is not Latin-1.

PNG 54 / 101

Encoders should discourage the creation of single lines of
text longer than 79 characters, in order to facilitate easy reading.

It is recommended that text items less than 1K (1024 bytes) in
size should be output using uncompressed tEXt chunks. In particular,
it is recommended that the basic title and author keywords should always be
output using uncompressed tEXt chunks. Lengthy disclaimers,
on the other hand, are ideal candidates for zTXt.

Placing large tEXt and zTXt chunks after the image
data (after IDAT) can speed up image display in some
situations, since the decoder won’t have to read over the text to get
to the image data. But it is recommended that small text chunks, such
as the image title, appear before IDAT.

1.63 9.8. Use of private chunks

9.8. Use of private chunks

Applications can use PNG private chunks to carry information that need
not be understood by other applications. Such chunks must be given
names with lowercase second letters, to ensure that they can never
conflict with any future public chunk definition. Note, however, that
there is no guarantee that some other application will not use the
same private chunk name. If you use a private chunk type, it is
prudent to store additional identifying information at the beginning
of the chunk data.

Use an ancillary chunk type (lowercase first letter), not a critical
chunk type, for all private chunks that store information that is not
absolutely essential to view the image. Creation of private critical
chunks is discouraged because they render PNG files unportable. Such
chunks should not be used in publicly available software or files.
If private critical chunks are essential for your application, it is
recommended that one appear near the start of the file, so that a
standard decoder need not read very far before discovering that it
cannot handle the file.

If you want others outside your organization to understand a chunk
type that you invent, contact the maintainers of the PNG specification
to submit a proposed chunk name and definition for addition to the
list of special-purpose public chunks
(see

Additional chunk types, Section 4.4
).

Note that a proposed public chunk name (with uppercase second letter)
must not be used in publicly available software or files until
registration has been approved.

If an ancillary chunk contains textual information that might be
of interest to a human user, you should not create a
special chunk type for it. Instead use a tEXt chunk
and define a suitable keyword. That way, the information will be
available to users not using your software.

PNG 55 / 101

Keywords in tEXt chunks should be reasonably
self-explanatory, since the idea is to let other users figure out what
the chunk contains. If of general usefulness, new keywords can be
registered with the maintainers of the PNG specification. But it is
permissible to use keywords without registering them first.

1.64 9.9. Private type and method codes

9.9. Private type and method codes

This specification defines the meaning of only some of the possible
values of some fields. For example, only compression method 0 and
filter types 0 through 4 are defined. Numbers greater than 127 must be used
when inventing experimental or private definitions of values for any
of these fields. Numbers below 128 are reserved for possible future
public extensions of this specification. Note that use of private
type codes may render a file unreadable by standard decoders. Such
codes are strongly discouraged except for experimental purposes, and
should not appear in publicly available software or files.

1.65 10. Recommendations for Decoders

10. Recommendations for Decoders

This chapter gives some recommendations for decoder behavior. The
only absolute requirement on a PNG decoder is that it successfully
read any file conforming to the format specified in the preceding
chapters. However, best results will usually be achieved by following
these recommendations.

10.1. Error checking

10.2. Pixel dimensions

10.3. Truecolor image handling

10.4. Sample depth rescaling

10.5. Decoder gamma handling

10.6. Decoder color handling

10.7. Background color

10.8. Alpha channel processing

10.9. Progressive display

10.10. Suggested-palette and histogram usage

PNG 56 / 101

10.11. Text chunk processing

1.66 10.1. Error checking

10.1. Error checking

To ensure early detection of common file-transfer problems,
decoders should verify that all eight bytes of the PNG file signature
are correct.
(See Rationale:

PNG file signature, Section 12.11
.)

A decoder can have additional confidence in the file’s integrity
if the next eight bytes are an IHDR chunk header with the
correct chunk length.

Unknown chunk types must be handled as described in

Chunk naming conventions (Section 3.3)
.

An unknown chunk type is not to be treated as an error unless it
is a critical chunk.

It is strongly recommended that decoders should verify the CRC on each chunk.

In some situations it is desirable to check chunk headers (length and
type code) before reading the chunk data and CRC. The chunk type can
be checked for plausibility by seeing whether all four bytes are ASCII
letters (codes 65-90 and 97-122); note that this need only be done for
unrecognized type codes. If the total file size is known
(from file system information, HTTP protocol, etc), the chunk length
can be checked for plausibility as well.

If CRCs are not checked, dropped/added data bytes or an erroneous
chunk length can cause the decoder to get out of step and misinterpret
subsequent data as a chunk header. Verifying that the chunk type
contains letters is an inexpensive way of providing early error
detection in this situation.

For known-length chunks such as IHDR, decoders should treat
an unexpected chunk length as an error. Future extensions to this
specification will not add new fields to existing chunks; instead, new
chunk types will be added to carry new information.

Unexpected values in fields of known chunks (for example, an
unexpected compression method in the IHDR chunk) must be
checked for and treated as errors. However, it is recommended that
unexpected field values be treated as fatal errors only in
critical chunks. An unexpected value in an ancillary chunk
can be handled by ignoring the whole chunk as though it were an
unknown chunk type. (This recommendation assumes that the chunk’s CRC
has been verified. In decoders that do not check CRCs, it is safer to

PNG 57 / 101

treat any unexpected value as indicating a corrupted file.)

1.67 10.2. Pixel dimensions

10.2. Pixel dimension

Non-square pixels can be represented (see the pHYs chunk),
but viewers are not required to account for them; a viewer can present
any PNG file as though its pixels are square.

Conversely, viewers running on display hardware with non-square pixels
are strongly encouraged to rescale images for proper display.

1.68 10.3. Truecolor image handling

10.3. Truecolor image handling

To achieve PNG’s goal of universal interchangeability, decoders are
required to accept all types of PNG image: indexed-color, truecolor, and
grayscale. Viewers running on indexed-color display hardware need to
be able to reduce truecolor images to indexed format for viewing. This
process is usually called "color quantization".

A simple, fast way of doing this is to reduce the image to a fixed
palette. Palettes with uniform color spacing ("color cubes") are
usually used to minimize the per-pixel computation. For
photograph-like images, dithering is recommended to avoid ugly contours
in what should be smooth gradients; however, dithering introduces
graininess that can be objectionable.

The quality of rendering can be improved substantially by using a
palette chosen specifically for the image, since a color cube usually
has numerous entries that are unused in any particular image. This
approach requires more work, first in choosing the palette, and second
in mapping individual pixels to the closest available color. PNG
allows the encoder to supply a suggested palette in a PLTE
chunk, but not all encoders will do so, and the suggested palette may
be unsuitable in any case (it may have too many or too few colors).
High-quality viewers will therefore need to have a palette selection
routine at hand. A large lookup table is usually the most feasible
way of mapping individual pixels to palette entries with adequate speed.

Numerous implementations of color quantization are available. The PNG
reference implementation, (ftp://ftp.uu.net/graphics/png/src/)
includes code for the purpose.

1.69 10.4. Sample depth rescaling

PNG 58 / 101

10.4. Sample depth rescaling

Decoders may wish to scale PNG data to a lesser sample depth (data
precision) for display. For example, 16-bit data will need to be
reduced to 8-bit depth for use on most present-day display hardware.
Reduction of 8-bit data to 5-bit depth is also common.

The most accurate scaling is achieved by the linear equation

output = ROUND(input * MAXOUTSAMPLE / MAXINSAMPLE)

where

MAXINSAMPLE = (2^sampledepth)-1
MAXOUTSAMPLE = (2^desired_sampledepth)-1

A slightly less accurate conversion is achieved by simply shifting right
by sampledepth-desired_sampledepth places. For example, to reduce
16-bit samples to 8-bit, one need only discard the low-order byte.
In many situations the shift method is sufficiently accurate for
display purposes, and it is certainly much faster. (But if gamma
correction is being done, sample rescaling can be merged into the
gamma correction lookup table, as is illustrated in

Decoder gamma handling, Section 10.5
.)

When an sBIT chunk is present, the original pre-PNG data can
be recovered by shifting right to the sample depth specified by
sBIT. Note that linear scaling will not necessarily
reproduce the original data, because the encoder is not required to
have used linear scaling to scale the data up. However, the encoder
is required to have used a method that preserves the high-order bits,
so shifting always works. This is the only case in which shifting
might be said to be more accurate than linear scaling.

When comparing pixel values to tRNS chunk values
to detect transparent pixels, it is necessary to do the comparison
exactly. Therefore, transparent pixel detection must be done before
reducing sample precision.

1.70 10.5. Decoder gamma handling

10.5. Decoder gamma handling

See
Gamma Tutorial (Chapter 13)
if you

aren’t already familiar with gamma issues.

To produce correct tone reproduction, a good image display program
should take into account the gammas of the image file and the
display device, as well as the viewing_gamma appropriate to the

PNG 59 / 101

lighting conditions near the display.
This can be done by calculating

gbright = insample / MAXINSAMPLE
bright = gbright ^ (1.0 / file_gamma)
vbright = bright ^ viewing_gamma
gcvideo = vbright ^ (1.0 / display_gamma)
fbval = ROUND(gcvideo * MAXFBVAL)

where MAXINSAMPLE is the maximum sample value in the file
(255 for 8-bit, 65535 for 16-bit, etc), MAXFBVAL is the
maximum value of a frame buffer sample (255 for 8-bit, 31 for 5-bit,
etc), insample is the value of the sample in the PNG file,
and fbval is the value to write into the frame buffer. The
first line converts from integer samples into a normalized 0 to 1
floating point value, the second undoes the gamma encoding of the
image file to produce a linear intensity value, the third adjusts
for the viewing conditions, the fourth corrects for the display
system’s gamma value, and the fifth converts to an integer frame
buffer sample. In practice, the second through fourth lines can be
merged into

gcvideo = gbright^(viewing_gamma / (file_gamma*display_gamma))

so as to perform only one power calculation. For color images, the entire
calculation is performed separately for R, G, and B values.

It is not necessary to perform transcendental math for every
pixel. Instead, compute a lookup table that gives the correct output
value for every possible sample value. This requires only 256
calculations per image (for 8-bit accuracy), not one or three
calculations per pixel. For an indexed-color image, a one-time
correction of the palette is sufficient, unless the image uses
transparency and is being displayed against a nonuniform background.

In some cases even the cost of computing a gamma lookup table may be a
concern. In these cases, viewers are encouraged to have precomputed
gamma correction tables for file_gamma values of 1.0 and 0.5 with some
reasonable choice of viewing_gamma and display_gamma, and to use the
table closest to the gamma indicated in the file. This will produce
acceptable results for the majority of real files.

When the incoming image has unknown gamma (no gAMA chunk),
choose a likely default file_gamma value, but allow the user to select a
new one if the result proves too dark or too light.

In practice, it is often difficult to determine what value of
display_gamma should be used. In systems with no built-in gamma
correction, the display_gamma is determined entirely by the CRT.
Assuming a CRT_gamma of 2.5 is recommended, unless you have detailed
calibration measurements of this particular CRT available.

However, many modern frame buffers have lookup tables that are used
to perform gamma correction, and on these systems the display_gamma
value should be the gamma of the lookup table and CRT combined. You
may not be able to find out what the lookup table contains from within
an image viewer application, so you may have to ask the user what the

PNG 60 / 101

system’s gamma value is. Unfortunately, different manufacturers use
different ways of specifying what should go into the lookup table, so
interpretation of the system gamma value is system-dependent.

Gamma Tutorial (Chapter 13)
gives some examples.

The response of real displays is actually more
complex than can be described by a single number (display_gamma). If
actual measurements of the monitor’s light output as a function of
voltage input are available, the fourth and fifth lines of the
computation above can be replaced by a lookup in these measurements,
to find the actual frame buffer value that most nearly gives the
desired brightness.

The value of viewing_gamma depends on lighting conditions; see

Gamma Tutorial (Chapter 13)
for more detail.

Ideally, a viewer would allow the user to specify viewing_gamma,
either directly numerically, or via selecting from "bright surround",
"dim surround", and "dark surround" conditions. Viewers that don’t
want to do this should just assume a value for viewing_gamma of 1.0,
since most computer displays live in brightly-lit rooms.

When viewing images that are digitized from video, or that are destined
to become video frames, the user might want to set the viewing_gamma to
about 1.25 regardless of the actual level of room lighting. This value
of viewing_gamma is "built into" NTSC video practice, and displaying an
image with that viewing_gamma allows the user to see what a TV set
would show under the current room lighting conditions. (This is not
the same thing as trying to obtain the most accurate rendition of the
content of the scene, which would require adjusting viewing_gamma to
correspond to the room lighting level.) This is another reason viewers
might want to allow users to adjust viewing_gamma directly.

1.71 10.6. Decoder color handling

10.6. Decoder color handling

See
Color Tutorial (Chapter 14)
if you

aren’t already familiar with color issues.

In many cases, decoders will treat image data in PNG files as
device-dependent RGB data and display it without modification (except
for appropriate gamma correction). This provides the fastest display
of PNG images. But unless the viewer uses exactly the same display
hardware as the original image author used, the colors will not be
exactly the same as the original author saw, particularly for darker
or near-neutral colors. The cHRM chunk provides information
that allows closer color matching than that provided by gamma
correction alone.

PNG 61 / 101

Decoders can use the cHRM data to transform the image data
from RGB to XYZ and thence into a perceptually linear color space such
as CIE LAB. They can then partition the colors to generate an optimal
palette, because the geometric distance between two colors in CIE LAB
is strongly related to how different those colors appear (unlike, for
example, RGB or XYZ spaces). The resulting palette of colors, once
transformed back into RGB color space, could be used for display or
written into a PLTE chunk.

Decoders that are part of image processing applications might also
transform image data into CIE LAB space for analysis.

In applications where color fidelity is critical, such as product
design, scientific visualization, medicine, architecture, or advertising,
decoders can transform the image data from source_RGB to the display_RGB
space of the monitor used to view the image. This involves calculating
the matrix to go from source_RGB to XYZ and the matrix to go from XYZ
to display_RGB, then combining them to produce the overall transformation.
The decoder is responsible for implementing gamut mapping.

Decoders running on platforms that have a Color Management System
(CMS) can pass the image data, gAMA and cHRM values to
the CMS for display or further processing.

Decoders that provide color printing facilities can use the
facilities in Level 2 PostScript to specify image data in calibrated
RGB space or in a device-independent color space such as XYZ. This
will provide better color fidelity than a simple RGB to CMYK
conversion. The PostScript Language Reference manual gives examples
of this process [POSTSCRIPT].
Such decoders are responsible for implementing gamut
mapping between source_RGB (specified in the cHRM chunk) and
the target printer. The PostScript interpreter is then responsible for
producing the required colors.

Decoders can use the cHRM data to calculate an accurate grayscale
representation of a color image. Conversion from RGB to gray is
simply a case of calculating the Y (luminance) component of XYZ, which
is a weighted sum of the R G and B values. The weights depend on the
monitor type, i.e., the values in the cHRM chunk.
Decoders may wish to do this for PNG files with no cHRM chunk.
In that case, a reasonable default would be the CCIR 709 primaries
[ITU-BT709]. Do not use the original NTSC primaries, unless
you really do have an image color-balanced for such a monitor. Few
monitors ever used the NTSC primaries, so such images are probably
nonexistent these days.

1.72 10.7. Background color

10.7. Background color

The background color given by bKGD will typically be used to
fill unused screen space around the image, as well as any transparent

PNG 62 / 101

pixels within the image. (Thus, bKGD is valid and useful
even when the image does not use transparency.) If no bKGD
chunk is present, the viewer will need to make its own decision about a
suitable background color.

Viewers that have a specific background against which to present the
image (such as Web browsers) should ignore the bKGD chunk, in
effect overriding bKGD with their preferred background color
or background image.

The background color given by bKGD is not to be considered
transparent, even if it happens to match the color given by
tRNS (or, in the case of an indexed-color image, refers to
a palette index that is marked as transparent by tRNS).
Otherwise one would have to imagine something "behind the background"
to composite against. The background color is either used as
background or ignored; it is not an intermediate layer between the PNG
image and some other background.

Indeed, it will be common that bKGD and tRNS
specify the same color, since then a decoder that does not implement
transparency processing will give the intended display, at least when
no partially-transparent pixels are present.

1.73 10.8. Alpha channel processing

10.8. Alpha channel processing

In the most general case, the alpha channel can be used to composite a
foreground image against a background image; the PNG file defines the
foreground image and the transparency mask, but not the background
image. Decoders are not required to support this most
general case. It is expected that most will be able to support
compositing against a single background color, however.

The equation for computing a composited sample value is

output = alpha * foreground + (1-alpha) * background

where alpha and the input and output sample values are expressed as
fractions in the range 0 to 1. This computation should be performed
with linear (non-gamma-encoded) sample values. For color images,
the computation is done separately for R, G, and B samples.

The following code illustrates the general case of compositing a
foreground image over a background image. It assumes that you have
the original pixel data available for the background image, and that
output is to a frame buffer for display. Other variants are possible;
see the comments below the code. The code allows the sample depths and
gamma values of foreground image, background image, and frame
buffer/CRT all to be different. Don’t assume they are the same
without checking.

This code is standard C, with line numbers added for reference in
the comments below.

PNG 63 / 101

01 int foreground[4]; /* image pixel: R, G, B, A */
02 int background[3]; /* background pixel: R, G, B */
03 int fbpix[3]; /* frame buffer pixel */
04 int fg_maxsample; /* foreground max sample */
05 int bg_maxsample; /* background max sample */
06 int fb_maxsample; /* frame buffer max sample */
07 int ialpha;
08 float alpha, compalpha;
09 float gamfg, linfg, gambg, linbg, comppix, gcvideo;

/* Get max sample values in data and frame buffer */
10 fg_maxsample = (1 << fg_sample_depth) - 1;
11 bg_maxsample = (1 << bg_sample_depth) - 1;
12 fb_maxsample = (1 << frame_buffer_sample_depth) - 1;

/*
* Get integer version of alpha.

* Check for opaque and transparent special cases;

* no compositing needed if so.

*
* We show the whole gamma decode/correct process in

* floating point, but it would more likely be done

* with lookup tables.

*/
13 ialpha = foreground[3];

14 if (ialpha == 0) {
/*
* Foreground image is transparent here.

* If the background image is already in the frame

* buffer, there is nothing to do.

*/
15 ;
16 } else if (ialpha == fg_maxsample) {

/*
* Copy foreground pixel to frame buffer.

*/
17 for (i = 0; i < 3; i++) {
18 gamfg = (float) foreground[i] / fg_maxsample;
19 linfg = pow(gamfg, 1.0/fg_gamma);
20 comppix = linfg;
21 gcvideo = pow(comppix,viewing_gamma/display_gamma);
22 fbpix[i] = (int) (gcvideo * fb_maxsample + 0.5);
23 }
24 } else {

/*
* Compositing is necessary.

* Get floating-point alpha and its complement.

* Note: alpha is always linear; gamma does not

* affect it.

*/
25 alpha = (float) ialpha / fg_maxsample;
26 compalpha = 1.0 - alpha;

27 for (i = 0; i < 3; i++) {
/*
* Convert foreground and background to floating

PNG 64 / 101

* point, then linearize (undo gamma encoding).

*/
28 gamfg = (float) foreground[i] / fg_maxsample;
29 linfg = pow(gamfg, 1.0/fg_gamma);
30 gambg = (float) background[i] / bg_maxsample;
31 linbg = pow(gambg, 1.0/bg_gamma);

/*
* Composite.

*/
32 comppix = linfg * alpha + linbg * compalpha;

/*
* Gamma correct for display.

* Convert to integer frame buffer pixel.

*/
33 gcvideo = pow(comppix,viewing_gamma/display_gamma);
34 fbpix[i] = (int) (gcvideo * fb_maxsample + 0.5);
35 }
36 }

Variations:

1) If output is to another PNG image file instead of a frame buffer,
lines 21, 22, 33, and 34 should be changed to be something like

/*
* Gamma encode for storage in output file.

* Convert to integer sample value.

*/
gamout = pow(comppix, outfile_gamma);
outpix[i] = (int) (gamout * out_maxsample + 0.5);

Also, it becomes necessary to process background pixels when alpha
is zero, rather than just skipping pixels. Thus, line 15 will need to be
replaced by copies of lines 17-23, but processing background instead
of foreground pixel values.

2) If the sample depths of the output file, foreground file, and
background file are all the same, and the three gamma values also match,
then the no-compositing code in lines 14-23 reduces to nothing more than
copying pixel values from the input file to the output file if alpha is
one, or copying pixel values from background to output file if alpha is
zero. Since alpha is typically either zero or one for the
vast majority of pixels in an image, this is a great savings.
No gamma computations are needed for most pixels.

3) When the sample depths and gamma values all match, it may appear
attractive to skip the gamma decoding and encoding (lines 28-31,
33-34) and just perform line 32 using gamma-encoded sample
values. Although this doesn’t hurt image quality too badly, the time
savings are small if alpha values of zero and one are special-cased as
recommended here.

4) If the original pixel values of the background image are no longer
available, only processed frame buffer pixels left by display of the
background image, then lines 30 and 31 need to extract intensity from
the frame buffer pixel values using code like

/*
* Decode frame buffer value back into linear space.

*/

PNG 65 / 101

gcvideo = (float) fbpix[i] / fb_maxsample;
linbg = pow(gcvideo, display_gamma / viewing_gamma);

However, some roundoff error can result, so it is better to have the
original background pixels available if at all possible.

5) Note that lines 18-22 are performing exactly the same gamma computation
that is done when no alpha channel is present. So, if you handle the
no-alpha case with a lookup table, you can use the same lookup table here.
Lines 28-31 and 33-34 can also be done with (different) lookup tables.

6) Of course, everything here can be done in integer arithmetic. Just
be careful to maintain sufficient precision all the way through.

Note: in floating point, no overflow or underflow checks are needed, because
the input sample values are guaranteed to be between 0 and 1, and compositing
always yields a result that is in between the input values (inclusive).
With integer arithmetic, some roundoff-error analysis might be needed
to guarantee no overflow or underflow.

When displaying a PNG image with full alpha channel, it is important
to be able to composite the image against some background, even if
it’s only black. Ignoring the alpha channel will cause PNG images
that have been converted from an associated-alpha representation to
look wrong. (Of course, if the alpha channel is a separate
transparency mask, then ignoring alpha is a useful option: it allows
the hidden parts of the image to be recovered.)

Even if the decoder author does not wish to implement true compositing
logic, it is simple to deal with images that contain only zero and one
alpha values. (This is implicitly true for grayscale and truecolor PNG
files that use a tRNS chunk; for indexed-color PNG files, it
is easy to check whether tRNS contains any values other than
0 and 255.) In this simple case, transparent pixels are replaced by
the background color, while others are unchanged. If a decoder
contains only this much transparency capability, it should deal with a
full alpha channel by treating all nonzero alpha values as fully
opaque; that is, do not replace partially transparent pixels by the
background. This approach will not yield very good results for images
converted from associated-alpha formats, but it’s better than doing
nothing.

1.74 10.9. Progressive display

10.9. Progressive display

When receiving images over slow transmission links, decoders can
improve perceived performance by displaying interlaced images
progressively. This means that as each pass is received, an
approximation to the complete image is displayed based on the data
received so far. One simple yet pleasing effect can be obtained by
expanding each received pixel to fill a rectangle covering the
yet-to-be-transmitted pixel positions below and to the right of the
received pixel. This process can be described by the following
pseudocode:

PNG 66 / 101

Starting_Row [1..7] = { 0, 0, 4, 0, 2, 0, 1 }
Starting_Col [1..7] = { 0, 4, 0, 2, 0, 1, 0 }
Row_Increment [1..7] = { 8, 8, 8, 4, 4, 2, 2 }
Col_Increment [1..7] = { 8, 8, 4, 4, 2, 2, 1 }
Block_Height [1..7] = { 8, 8, 4, 4, 2, 2, 1 }
Block_Width [1..7] = { 8, 4, 4, 2, 2, 1, 1 }

pass := 1
while pass <= 7
begin

row := Starting_Row[pass]

while row < height
begin

col := Starting_Col[pass]

while col < width
begin

visit (row, col,
min (Block_Height[pass], height - row),
min (Block_Width[pass], width - col))

col := col + Col_Increment[pass]
end
row := row + Row_Increment[pass]

end

pass := pass + 1
end

Here, the function "visit(row,column,height,width)" obtains the next
transmitted pixel and paints a rectangle of the specified height and
width, whose upper-left corner is at the specified row and column,
using the color indicated by the pixel.
Note that row and column are measured from 0,0 at the upper left corner.

If the decoder is merging the received image with a background image,
it may be more convenient just to paint the received pixel positions;
that is, the "visit()" function sets only the pixel at the specified
row and column, not the whole rectangle. This produces a "fade-in"
effect as the new image gradually replaces the old. An advantage of
this approach is that proper alpha or transparency processing can be
done as each pixel is replaced. Painting a rectangle as described
above will overwrite background-image pixels that may be needed later,
if the pixels eventually received for those positions turn out to be
wholly or partially transparent. Of course, this is only a problem if
the background image is not stored anywhere offscreen.

1.75 10.10. Suggested-palette and histogram usage

10.10. Suggested-palette and histogram usage

In truecolor PNG files, the encoder may have provided a suggested
PLTE chunk for use by viewers running on indexed-color
hardware.

PNG 67 / 101

If the image has a tRNS chunk, the viewer will need to adapt
the suggested palette for use with its desired background color. To
do this, replace the palette entry closest to the tRNS color
with the desired background color; or just add a palette entry for the
background color, if the viewer can handle more colors than there are
PLTE entries.

For images of color type 6 (truecolor with alpha channel), any
suggested palette should have been designed for display of the image
against a uniform background of the color specified by bKGD.
Viewers should probably ignore the palette if they intend to use a
different background, or if the bKGD chunk is missing.
Viewers can use a suggested palette for display against a
different background than it was intended for, but the results
may not be very good.

If the viewer presents a transparent truecolor image against
a background that is more complex than a single color, it is unlikely
that the suggested palette will be optimal for the composite image.
In this case it is best to perform a truecolor compositing step on the
truecolor PNG image and background image, then color-quantize the
resulting image.

The histogram chunk is useful when the viewer cannot provide as many
colors as are used in the image’s palette. If the viewer is only
short a few colors, it is usually adequate to
drop the least-used colors from the palette. To reduce the number of
colors substantially, it’s best to choose entirely new representative
colors, rather than trying to use a subset of the existing palette.
This amounts to performing a new color quantization step; however, the
existing palette and histogram can be used as the input data, thus
avoiding a scan of the image data.

If no palette or histogram chunk is provided, a decoder can
develop its own, at the cost of an extra pass over the image data.
Alternatively, a default palette (probably a color cube) can be used.

See also Recommendations for Encoders:

Suggested palettes (Section 9.5)
.

1.76 10.11. Text chunk processing

10.11. Text chunk processing

If practical, decoders should have a way to display to the user all
tEXt and zTXt chunks found in the file. Even if the
decoder does not recognize a particular text keyword, the user might
be able to understand it.

PNG text is not supposed to contain any characters outside the ISO
8859-1 "Latin-1" character set (that is, no codes 0-31 or 127-159),

PNG 68 / 101

except for the newline character (decimal 10). But decoders might
encounter such characters anyway. Some of these characters can be
safely displayed (e.g., TAB, FF, and CR, decimal 9, 12, and 13,
respectively), but others, especially the ESC character (decimal 27),
could pose a security hazard because unexpected actions may be taken
by display hardware or software. To prevent such hazards, decoders
should not attempt to directly display any non-Latin-1 characters
(except for newline and perhaps TAB, FF, CR) encountered in a
tEXt or zTXt chunk. Instead, ignore them or display
them in a visible notation such as "\nnn". See

Security considerations (Section 8.5)
.

Even though encoders are supposed to represent newlines as LF, it is
recommended that decoders not rely on this; it’s best to recognize all
the common newline combinations (CR, LF, and CR-LF) and display each as a
single newline. TAB can be expanded to the proper number of spaces
needed to arrive at a column multiple of 8.

Decoders running on systems with non-Latin-1 character set encoding
should provide character code remapping so that Latin-1 characters are
displayed correctly. Some systems may not provide all the characters
defined in Latin-1. Mapping unavailable characters to a visible
notation such as "\nnn" is a good fallback. In particular,
character codes 127-255 should be displayed only if they are printable
characters on the decoding system. Some systems may interpret such
codes as control characters; for security, decoders running on such
systems should not display such characters literally.

Decoders should be prepared to display text chunks that contain any
number of printing characters between newline characters, even though
encoders are encouraged to avoid creating lines in excess of 79
characters.

1.77 11. Glossary

11. Glossary

- a^b:
Exponentiation; a raised to the power b.
C programmers should be careful not to misread this notation as
exclusive-or. Note that in gamma-related calculations, zero raised
to any power is valid and must give a zero result.

- Alpha:
A value representing a pixel’s degree of transparency. The
more transparent a pixel, the less it hides the background against
which the image is presented. In PNG, alpha is really the degree of
opacity: zero alpha represents a completely transparent pixel, maximum
alpha represents a completely opaque pixel. But most people refer to

PNG 69 / 101

alpha as providing transparency information, not opacity information,
and we continue that custom here.

- Ancillary chunk:
A chunk that provides additional information. A decoder can
still produce a meaningful image, though not necessarily the best
possible image, without processing the chunk.

- Bit depth:
The number of bits per palette index (in indexed-color PNGs) or
per sample (in other color types). This is the same value that appears
in IHDR.

- Byte:
Eight bits; also called an octet.

- Channel:
The set of all samples of the same kind within an image; for
example, all the blue samples in a truecolor image. (The term
"component" is also used, but not in this specification.) A sample is
the intersection of a channel and a pixel.

- Chromaticity:
A pair of values x,y that precisely specify the hue,
though not the absolute brightness, of a perceived color.

- Chunk:
A section of a PNG file. Each chunk has a type indicated by
its chunk type name. Most types of chunks also include some data.
The format and meaning of the data within the chunk are determined by
the type name.

- Composite:
As a verb, to form an image by merging a foreground image and
a background image, using transparency information to determine where
the background should be visible. The foreground image is said to be
"composited against" the background.

- CRC:
Cyclic Redundancy Check. A CRC is a type of check value designed
to catch most transmission errors. A decoder calculates the CRC for
the received data and compares it to the CRC that the encoder
calculated, which is appended to the data. A mismatch indicates that
the data was corrupted in transit.

- Critical chunk:
A chunk that must be understood and processed by the decoder
in order to produce a meaningful image from a PNG file.

- CRT:
Cathode Ray Tube: a common type of computer display hardware.

- Datastream:
A sequence of bytes. This term is used rather than "file" to
describe a byte sequence that is only a portion of a file. We also
use it to emphasize that a PNG image might be generated
and consumed "on the fly", never appearing in a stored file at all.

PNG 70 / 101

- Deflate:
The name of the compression algorithm used in standard PNG files,
as well as in zip, gzip, pkzip, and other compression programs.
Deflate is a member of the LZ77 family of compression methods.

- Filter:
A transformation applied to image data in hopes of improving
its compressibility. PNG uses only lossless (reversible) filter
algorithms.

- Frame buffer:
The final digital storage area for the image shown by
a computer display. Software causes an image to appear onscreen
by loading it into the frame buffer.

- Gamma:
The brightness of mid-level tones in an image. More precisely,
a parameter that describes the shape of the transfer function for one
or more stages in an imaging pipeline. The transfer function is
given by the expression

output = input ^ gamma

where both input and output are scaled to the range 0 to 1.

- Grayscale:
An image representation in which each pixel is represented by a
single sample value representing overall luminance (on a scale from
black to white). PNG also permits an alpha sample to be stored for
each pixel of a grayscale image.

- Indexed color:
An image representation in which each pixel is represented by a
single sample that is an index into a palette or lookup table.
The selected palette entry defines the actual color of the pixel.

- Lossless compression:
Any method of data compression that guarantees the original data
can be reconstructed exactly, bit-for-bit.

- Lossy compression:
Any method of data compression that reconstructs the original
data approximately, rather than exactly.

- LSB:
Least Significant Byte of a multi-byte value.

- Luminance:
Perceived brightness, or grayscale level, of a color.
Luminance and chromaticity together fully define a perceived color.

- LUT:
Look Up Table.
In general, a table used to transform data. In frame buffer hardware,
a LUT can be used to map indexed-color pixels into a selected set of
truecolor values, or to perform gamma correction. In software, a LUT

PNG 71 / 101

can be used as a fast way of implementing any one-variable
mathematical function.

- MSB:
Most Significant Byte of a multi-byte value.

- Palette:
The set of colors available in an indexed-color image. In PNG,
a palette is an array of colors defined by red, green, and blue samples.
(Alpha values can also be defined for palette entries, via the
tRNS chunk.)

- Pixel:
The information stored for a single grid point in
the image. The complete image is a rectangular array of pixels.

- PNG editor:
A program that modifies a PNG file and preserves ancillary
information, including chunks that it does not recognize. Such a
program must obey the rules given in

Chunk Ordering Rules (Chapter 7)
.

- Sample:
A single number in the image data; for example, the
red value of a pixel. A pixel is composed of one or more samples.
When discussing physical data layout (in particular, in

Image layout, Section 2.3
), we use "sample" to mean

a number stored in the image array. It would be more precise but
much less readable to say "sample or palette index" in that context.
Elsewhere in the specification, "sample" means a color value or alpha value.
In the indexed-color case, these are palette entries not palette indexes.

- Sample depth:
The precision, in bits, of color values and alpha values. In
indexed-color PNGs the sample depth is always 8 by definition of
the PLTE chunk. In other color types it is the same as
the bit depth.

- Scanline:
One horizontal row of pixels within an image.

- Truecolor:
An image representation in which pixel colors are defined by
storing three samples for each pixel, representing red, green, and
blue intensities respectively. PNG also permits an alpha sample to
be stored for each pixel of a truecolor image.

- White point:
The chromaticity of a computer display’s nominal white value.

- zlib:
A particular format for data that has been compressed using
deflate-style compression. Also the name of a library implementing

PNG 72 / 101

this method. PNG implementations need not use the zlib library,
but they must conform to its format for compressed data.

1.78 12. Appendix: Rationale

12. Rationale

(This appendix is not part of the formal PNG specification.)

This appendix gives the reasoning behind some of the design decisions
in PNG. Many of these decisions were the subject of considerable
debate. The authors freely admit that another group might have made
different decisions; however, we believe that our choices are
defensible and consistent.

12.1. Why a new file format?

12.2. Why these features?

12.3. Why not these features?

12.4. Why not use format X?

12.5. Byte order

12.6. Interlacing

12.7. Why gamma?

12.8. Non-premultiplied alpha

12.9. Filtering

12.10. Text strings

12.11. PNG file signature

12.12. Chunk layout

12.13. Chunk naming conventions

12.14. Palette histograms

1.79 12.1. Why a new file format?

PNG 73 / 101

12.1. Why a new file format?

Does the world really need yet another graphics format? We believe
so. GIF is no longer freely usable, but no other commonly used format
can directly replace it, as is discussed in more detail below. We
might have used an adaptation of an existing format, for example GIF
with an unpatented compression scheme. But this would require new
code anyway; it would not be all that much easier to implement than a
whole new file format. (PNG is designed to be
simple to implement, with the exception of the compression
engine, which would be needed in any case.) We feel that this is an
excellent opportunity to design a new format that fixes some of the
known limitations of GIF.

1.80 12.2. Why these features?

12.2. Why these features?

The features chosen for PNG are intended to address the needs of
applications that previously used the special strengths of GIF.
In particular, GIF is well adapted for online communications
because of its streamability and progressive display capability.
PNG shares those attributes.

We have also addressed some of the widely known shortcomings of GIF.
In particular, PNG supports truecolor images. We know of no widely
used image format that losslessly compresses truecolor images as
effectively as PNG does. We hope that PNG will make use of
truecolor images more practical and widespread.

Some form of transparency control is desirable for applications
in which images are displayed against a background or together with
other images. GIF provided a simple transparent-color specification
for this purpose. PNG supports a full alpha channel as well as
transparent-color specifications. This allows both highly flexible
transparency and compression efficiency.

Robustness against transmission errors has been an important
consideration. For example, images transferred across Internet are
often mistakenly processed as text, leading to file corruption. PNG
is designed so that such errors can be detected quickly and reliably.

PNG has been expressly designed not to be completely
dependent on a single compression technique. Although
deflate/inflate compression is mentioned in this
document, PNG would still exist without it.

1.81 12.3. Why not these features?

12.3. Why not these features?

PNG 74 / 101

Some features have been deliberately omitted from PNG. These choices
were made to simplify implementation of PNG, promote portability and
interchangeability, and make the format as simple and foolproof as
possible for users. In particular:

- There is no uncompressed variant of PNG. It is possible to store
uncompressed data by using only uncompressed deflate blocks (a feature
normally used to guarantee that deflate does not make incompressible
data much larger). However, PNG software must support full
deflate/inflate; any software that does not is not compliant with the PNG
standard. The two most important features of PNG---portability and
compression---are absolute requirements for online applications, and
users demand them. Failure to support full deflate/inflate compromises
both of these objectives.

- There is no lossy compression in PNG. Existing formats such as JFIF
already handle lossy compression well. Furthermore, available lossy
compression methods (e.g., JPEG) are far from foolproof --- a
poor choice of quality level can ruin an image. To avoid user
confusion and unintentional loss of information, we feel it is best to
keep lossy and lossless formats strictly separate. Also, lossy compression
is complex to implement. Adding JPEG support to a PNG decoder
might increase its size by an order of magnitude. This would
certainly cause some decoders to omit support for the feature, which
would destroy our goal of interchangeability.

- There is no support for CMYK or other unusual color spaces.
Again, this is in the name of promoting portability. CMYK, in
particular, is far too device-dependent to be useful as a portable
image representation.

- There is no standard chunk for thumbnail views of images. In
discussions with software vendors who use thumbnails in their
products, it has become clear that most would not use a "standard"
thumbnail chunk. For one thing, every vendor has a different idea
of what the dimensions and characteristics of a thumbnail ought to
be. Also, some vendors keep thumbnails in separate files
to accommodate varied image formats; they are not going to stop doing that
simply because of a thumbnail chunk in one new format. Proprietary
chunks containing vendor-specific thumbnails appear to be more
practical than a common thumbnail format.

It is worth noting that private extensions to PNG could easily add
these features. We will not, however, include them as part of the
basic PNG standard.

PNG also does not support multiple images in one file.
This restriction is a reflection of the reality that many applications
do not need and will not support multiple images per file.
In any case, single images are a
fundamentally different sort of object from sequences of images.
Rather than make false promises of
interchangeability, we have drawn a clear distinction between
single-image and multi-image formats. PNG is a single-image format.
(But see

Multiple-image extension, Section 8.4
.)

PNG 75 / 101

1.82 12.4. Why not use format X?

12.4. Why not use format X?

Numerous existing formats were considered before deciding
to develop PNG. None could meet the requirements we felt
were important for PNG.

GIF is no longer suitable as a universal standard because of legal
entanglements. Although just replacing GIF’s compression method would
avoid that problem, GIF does not support truecolor images, alpha
channels, or gamma correction. The spec has more subtle problems too.
Only a small subset of the GIF89 spec is actually portable across a
variety of implementations, but there is no codification of the most
portable part of the spec.

TIFF is far too complex to meet our goals of simplicity and
interchangeability. Defining a TIFF subset would meet that objection,
but would frustrate users making the reasonable assumption that a file
saved as TIFF from their existing software would load into a program
supporting our flavor of TIFF. Furthermore, TIFF is not designed for stream
processing, has no provision for progressive display, and does not
currently provide any good, legally unencumbered, lossless compression
method.

IFF has also been suggested, but is not suitable in detail: available
image representations are too machine-specific or not adequately
compressed. The overall chunk structure of IFF is a useful concept
that PNG has liberally borrowed from, but we did not attempt to be
bit-for-bit compatible with IFF chunk structure. Again this is due to
detailed issues, notably the fact that IFF FORMs are not designed to
be serially writable.

Lossless JPEG is not suitable because it does not provide for the
storage of indexed-color images. Furthermore, its lossless truecolor
compression is often inferior to that of PNG.

1.83 12.5. Byte order

12.5. Byte order

It has been asked why PNG uses network byte order.
We have selected one byte ordering and used it
consistently. Which order in particular is
of little relevance, but network byte order
has the advantage that routines to convert
to and from it are already available on any
platform that supports TCP/IP networking,
including all PC platforms.
The functions are trivial and will be included
in the reference implementation.

PNG 76 / 101

1.84 12.6. Interlacing

12.6. Interlacing

PNG’s two-dimensional interlacing scheme is more complex
to implement than GIF’s line-wise interlacing. It also costs a
little more in file size. However, it yields an initial image
eight times faster than GIF (the first pass transmits
only 1/64th of the pixels, compared to 1/8th for GIF). Although
this initial image is coarse, it is useful in many situations.
For example, if the image is a World Wide Web imagemap that the
user has seen before, PNG’s first pass is often enough to determine
where to click. The PNG scheme also looks better than GIF’s, because
horizontal and vertical resolution never differ by more than a factor
of two; this avoids the odd "stretched" look seen when interlaced
GIFs are filled in by replicating scanlines. Preliminary results
show that small text in an interlaced PNG image is typically
readable about twice as fast as in an equivalent GIF, i.e., after
PNG’s fifth pass or 25% of the image data, instead of after GIF’s
third pass or 50%. This is again due to PNG’s more balanced increase
in resolution.

1.85 12.7. Why gamma?

12.7. Why gamma?

It might seem natural to standardize on storing sample values that are
linearly proportional to light intensity (that is, have gamma of 1.0).
But in fact, it is common for images to have a gamma of less than 1.
There are three good reasons for this:

- For reasons detailed in
Gamma Tutorial (Chapter 13)
,

all video cameras apply a "gamma correction" function to the intensity
information. This causes the video signal to have a gamma of about
0.5 relative to the light intensity in the original scene. Thus,
images obtained by frame-grabbing video already have a gamma of about
0.5.

- The human eye
has a nonlinear response to intensity, so linear encoding
of samples either wastes sample codes in bright areas of the
image, or provides too few sample codes to avoid banding artifacts
in dark areas of the image, or both. At least 12 bits
per sample are needed to avoid visible artifacts in linear encoding
with a 100:1 image intensity range.
An image gamma in the range 0.3 to 0.5 allocates sample values
in a way that roughly corresponds to the eye’s response, so that
8 bits/sample are enough to avoid artifacts caused by insufficient
sample precision in almost all images.
This makes "gamma encoding" a much better way of
storing digital images than the simpler linear encoding.

- Many images are created on PCs or workstations with no gamma
correction hardware and no software willing to provide gamma

PNG 77 / 101

correction either. In these cases, the images have had their
lighting and color chosen to look best on this platform --- they
can be thought of as having "manual" gamma correction built in.
To see what the image author intended,
it is necessary to treat such images as having a file_gamma
value in the range 0.4-0.6, depending on the room lighting
level that the author was working in.

In practice, image gamma values around 1.0 and around 0.5 are both
widely found. Older image standards such as GIF often do not account
for this fact. The JFIF standard specifies that images in that format
should use linear samples, but many JFIF images found on the Internet
actually have a gamma somewhere near 0.4 or 0.5. The
variety of images found and the variety of systems that people display
them on have led to widespread problems with images appearing
"too dark" or "too light".

PNG expects viewers to compensate for image gamma at the time that
the image is displayed. Another possible approach is to expect encoders
to convert all images to a uniform gamma at encoding time. While that
method would speed viewers slightly, it has fundamental flaws:

- Gamma correction is inherently lossy due to quantization and roundoff error.
Requiring conversion at encoding time thus causes irreversible
loss. Since PNG is intended to be a lossless storage format, this is
undesirable; we should store unmodified source data.

- The encoder might not know the source gamma value. If the decoder
does gamma correction at viewing time, it can adjust the gamma
(change the displayed brightness) in response to feedback from a
human user. The encoder has no such recourse.

- Whatever "standard" gamma we settled on would be wrong for
some displays. Hence viewers would still need gamma correction
capability.

Since there will always be images with no gamma or an incorrect
recorded gamma, good viewers will need to incorporate gamma
adjustment code anyway. Gamma correction at viewing time is thus the
right way to go.

See
Gamma Tutorial (Chapter 13)
for more information.

1.86 12.8. Non-premultiplied alpha

12.8. Non-premultiplied alpha

PNG uses "unassociated" or "non-premultiplied" alpha so that
images with separate transparency masks can be stored losslessly.
Another common technique, "premultiplied alpha", stores pixel values
premultiplied by the alpha fraction; in effect, the image is already
composited against a black background. Any image data hidden by the
transparency mask is irretrievably lost by that method, since

PNG 78 / 101

multiplying by a zero alpha value always produces zero.

Some image rendering techniques generate images with premultiplied
alpha (the alpha value actually represents how much of the pixel is
covered by the image). This representation can be converted to PNG by
dividing the sample values by alpha, except where alpha is zero. The
result will look good if displayed by a viewer that handles alpha
properly, but will not look very good if the viewer ignores the alpha
channel.

Although each form of alpha storage has its advantages, we did not
want to require all PNG viewers to handle both forms. We standardized
on non-premultiplied alpha as being the lossless and more general case.

1.87 12.9. Filtering

12.9. Filtering

PNG includes filtering capability because filtering can significantly
reduce the compressed size of truecolor and grayscale images.
Filtering is also sometimes of value on indexed-color images, although
this is less common.

The filter algorithms are defined to operate on bytes, rather than
pixels; this gains simplicity and speed with very little cost in
compression performance. Tests have shown that filtering is
usually ineffective for images with fewer than 8 bits per sample, so
providing pixelwise filtering for such images would be pointless.
For 16 bit/sample data, bytewise filtering is nearly as effective as
pixelwise filtering, because MSBs are predicted from adjacent MSBs,
and LSBs are predicted from adjacent LSBs.

The encoder is allowed to change filters for each new scanline.
This creates no additional complexity for decoders, since a decoder is
required to contain defiltering logic for every filter type anyway.
The only cost is an extra byte per scanline in the pre-compression
datastream. Our tests showed that when the same filter is selected
for all scanlines, this extra byte compresses away to almost nothing,
so there is little storage cost compared to a fixed filter specified
for the whole image. And the potential benefits of adaptive filtering
are too great to ignore. Even with the simplistic filter-choice
heuristics so far discovered, adaptive filtering usually outperforms
fixed filters. In particular, an adaptive filter can change behavior
for successive passes of an interlaced image; a fixed filter cannot.

1.88 12.10. Text strings

12.10. Text strings

Most graphics file formats include the ability to store some textual
information along with the image. But many applications need more
than that: they want to be able to store several identifiable pieces

PNG 79 / 101

of text. For example, a database using PNG files to store medical
X-rays would likely want to include patient’s name, doctor’s name,
etc. A simple way to do this in PNG would be to invent new
private chunks holding text. The disadvantage of such an approach
is that other applications would have no idea what was in those
chunks, and would simply ignore them. Instead, we recommend that textual
information be stored in standard tEXt chunks with suitable
keywords. Use of tEXt tells any PNG viewer that the chunk
contains text that might be of interest to a human user. Thus, a person
looking at the file with another viewer will still be able to see the
text, and even understand what it is if the keywords are reasonably
self-explanatory. (To this end, we recommend spelled-out keywords,
not abbreviations that will be hard for a person to understand.
Saving a few bytes on a keyword is false economy.)

The ISO 8859-1 (Latin-1) character set was chosen as a compromise
between functionality and portability. Some platforms cannot
display anything more than 7-bit ASCII characters, while others
can handle characters beyond the Latin-1 set. We felt that Latin-1
represents a widely useful and reasonably portable character set.
Latin-1 is a direct subset of character sets commonly used on
popular platforms such as Microsoft Windows and X Windows. It can
also be handled on Macintosh systems with a simple remapping of
characters.

There is presently no provision for text employing character
sets other than Latin-1. We
recognize that the need for other character sets will increase.
However, PNG already requires that programmers implement a
number of new and unfamiliar features, and text representation
is not PNG’s primary purpose. Since PNG provides for the creation
and public registration of new ancillary chunks of general interest,
we expect that text chunks for other character sets, such
as Unicode, eventually will be registered and increase gradually in
popularity.

1.89 12.11. PNG file signature

12.11. PNG file signature

The first eight bytes of a PNG file always contain the following
values:

(decimal) 137 80 78 71 13 10 26 10
(hexadecimal) 89 50 4e 47 0d 0a 1a 0a
(ASCII C notation) \211 P N G \r \n \032 \n

This signature both identifies the file as a PNG file and provides for
immediate detection of common file-transfer problems.
The first two bytes distinguish PNG files on systems that expect the
first two bytes to identify the file type uniquely. The first byte is
chosen as a non-ASCII value to reduce the probability that a text file
may be misrecognized as a PNG file; also, it catches bad file
transfers that clear bit 7. Bytes two through four name the format.

PNG 80 / 101

The CR-LF sequence catches bad file transfers that alter newline
sequences. The control-Z character stops file display under MS-DOS.
The final line feed checks for the inverse of the CR-LF translation
problem.

A decoder may further verify that the next eight bytes contain an
IHDR chunk header with the correct chunk length; this will
catch bad transfers that drop or alter null (zero) bytes.

Note that there is no version number in the signature, nor indeed
anywhere in the file. This is intentional: the chunk mechanism
provides a better, more flexible way to handle format extensions, as
explained in

Chunk naming conventions (Section 12.13)
.

1.90 12.12. Chunk layout

12.12. Chunk layout

The chunk design allows decoders to skip unrecognized or uninteresting
chunks: it is simply necessary to skip the appropriate number of
bytes, as determined from the length field.

Limiting chunk length to (2^31)-1 bytes avoids possible problems for
implementations that cannot conveniently handle 4-byte unsigned values.
In practice, chunks will usually be much shorter than that anyway.

A separate CRC is provided for each chunk in order to detect
badly-transferred images as quickly as possible. In particular,
critical data such as the image dimensions can be validated before
being used.

The chunk length is excluded from the CRC so that the CRC can be
calculated as the data is generated; this avoids a second pass over
the data in cases where the chunk length is not known in advance.
Excluding the length from the CRC does not create
any extra risk of failing to discover file corruption, since if the
length is wrong, the CRC check will fail: the CRC will be computed on
the wrong set of bytes and then be tested against the wrong value from
the file.

1.91 12.13. Chunk naming conventions

12.13. Chunk naming conventions

The chunk naming conventions allow safe, flexible extension of the PNG
format. This mechanism is much better than a format version number,
because it works on a feature-by-feature basis rather than being an
overall indicator. Decoders can process newer files if and only if

PNG 81 / 101

the files use no unknown critical features (as indicated by finding
unknown critical chunks). Unknown ancillary chunks can be safely
ignored. We decided against having an overall format version number
because experience has shown that format version numbers hurt
portability as much as they help. Version numbers tend to be set
unnecessarily high, leading to older decoders rejecting files that
they could have processed (this was a serious problem for several
years after the GIF89 spec came out, for example). Furthermore,
private extensions can be made either critical or ancillary, and
standard decoders should react appropriately; overall version numbers
are no help for private extensions.

A hypothetical chunk for vector graphics would be a critical chunk,
since if ignored, important parts of the intended image would be
missing. A chunk carrying the Mandelbrot set coordinates for a
fractal image would be ancillary, since other applications could
display the image without understanding what the image represents.
In general, a chunk type should be made
critical only if it is impossible to display a reasonable
representation of the intended image without interpreting that chunk.

The public/private property bit ensures that any newly defined public
chunk type name cannot conflict with proprietary chunks that could be
in use somewhere. However, this does not protect users of private
chunk names from the possibility that someone else may use the same
chunk name for a different purpose. It is a good idea to put
additional identifying information at the start of the data for any
private chunk type.

When a PNG file is modified, certain ancillary chunks may need to be
changed to reflect changes in other chunks. For example, a histogram
chunk needs to be changed if the image data changes. If the file editor
does not recognize histogram chunks, copying them blindly to a new
output file is incorrect; such chunks should be dropped. The
safe/unsafe property bit allows ancillary chunks to be marked
appropriately.

Not all possible modification scenarios are covered by the safe/unsafe
semantics. In particular, chunks that are dependent on the total file
contents are not supported. (An example of such a chunk is an index
of IDAT chunk locations within the file: adding a comment
chunk would inadvertently break the index.) Definition of such chunks is
discouraged. If absolutely necessary for a particular application,
such chunks can be made critical chunks, with consequent loss of
portability to other applications. In general, ancillary chunks can
depend on critical chunks but not on other ancillary chunks. It is
expected that mutually dependent information should be put into a
single chunk.

In some situations it may be unavoidable to make one ancillary chunk
dependent on another. Although the chunk property bits are insufficient
to represent this case, a simple solution is available: in the
dependent chunk, record the CRC of the chunk depended on. It can
then be determined whether that chunk has been changed by some other
program.

The same technique can be useful for other purposes. For example, if

PNG 82 / 101

a program relies on the palette being in a particular order, it can
store a private chunk containing the CRC of the PLTE chunk.
If this value matches when the file is again read in, then it provides
high confidence that the palette has not been tampered with. Note
that it is not necessary to mark the private chunk unsafe-to-copy
when this technique is used; thus, such a private chunk can survive
other editing of the file.

1.92 12.14. Palette histograms

12.14. Palette histograms

A viewer may not be able to provide as many colors as are listed in
the image’s palette. (For example, some colors could be reserved by a
window system.) To produce the best results in this situation, it is
helpful to have information about the frequency with which each palette
index actually appears, in order to choose the best palette for
dithering or to drop the least-used colors. Since images are often
created once and viewed many times, it makes sense to calculate this
information in the encoder, although it is not mandatory for the
encoder to provide it.

Other image formats have usually addressed this problem by specifying
that the palette entries should appear in order of frequency of use.
That is an inferior solution, because it doesn’t give the viewer
nearly as much information: the viewer can’t determine how much damage
will be done by dropping the last few colors. Nor does a sorted
palette give enough information to choose a target palette for
dithering, in the case that the viewer needs to reduce the number of
colors substantially. A palette histogram provides the information
needed to choose such a target palette without making a pass over the
image data.

1.93 13. Appendix: Gamma Tutorial

13. Appendix: Gamma Tutorial

(This appendix is not part of the formal PNG specification.)

It would be convenient for graphics programmers if all of the components
of an imaging system were linear. The voltage coming from an electronic
camera would be directly proportional to the intensity (power) of light
in the scene, the light emitted by a CRT would be directly
proportional to its input voltage, and so on. However, real-world
devices do not behave in this way. All CRT displays, almost all
photographic film, and many electronic cameras have nonlinear
signal-to-light-intensity or intensity-to-signal characteristics.

Fortunately, all of these nonlinear devices have a
transfer function that is approximated fairly well by a single type of
mathematical function: a power function. This power function has the

PNG 83 / 101

general equation

output = input ^ gamma

where ^ denotes exponentiation, and "gamma" (often printed
using the Greek letter gamma, thus the name) is simply the exponent of
the power function.

By convention, "input" and "output" are both scaled to the range 0..1,
with 0 representing black and 1 representing maximum white (or
red, etc). Normalized in this way, the power function is completely
described by a single number, the exponent "gamma".

So, given a particular device, we can measure its output as a function
of its input, fit a power function to this measured transfer function,
extract the exponent, and call it gamma. We often say "this device has
a gamma of 2.5" as a shorthand for "this device has a power-law response
with an exponent of 2.5". We can also talk about the gamma of a
mathematical transform, or of a lookup table in a frame buffer, so long
as the input and output of the thing are related by the power-law
expression above.

How do gammas combine?

Real imaging systems will have several components, and more than one of
these can be nonlinear. If all of the components have transfer
characteristics that are power functions, then the transfer function of
the entire system is also a power function. The exponent (gamma) of the
whole system’s transfer function is just the product of all of the
individual exponents (gammas) of the separate stages in the system.

Also, stages that are linear pose no problem, since a power function
with an exponent of 1.0 is really a linear function. So a linear
transfer function is just a special case of a power function, with a
gamma of 1.0.

Thus, as long as our imaging system contains only stages with linear and
power-law transfer functions, we can meaningfully talk about the gamma of
the entire system. This is indeed the case with most real imaging systems.

What should overall gamma be?

If the overall gamma of an imaging system is 1.0, its output is
linearly proportional to its input. This means that the ratio
between the intensities of any two areas in the reproduced image will
be the same as it was in the original scene. It might seem that this
should always be the goal of an imaging system: to accurately reproduce
the tones of the original scene. Alas, that is not the case.

When the reproduced image is to be viewed in "bright surround"
conditions, where other white objects nearby in the room have about
the same brightness as white in the image, then an overall gamma of 1.0
does indeed give real-looking reproduction of a natural scene.
Photographic prints viewed under room light and computer displays in
bright room light are typical "bright surround" viewing conditions.

However, sometimes images are intended to be viewed in "dark surround"

PNG 84 / 101

conditions, where the room is substantially black except for the image.
This is typical of the way movies and slides (transparencies) are viewed
by projection. Under these circumstances, an accurate reproduction of
the original scene results in an image that human viewers judge as
"flat" and lacking in contrast. It turns out that the projected image
needs to have a gamma of about 1.5 relative to the original scene for
viewers to judge it "natural". Thus, slide film is designed to have a
gamma of about 1.5, not 1.0.

There is also an intermediate condition called "dim surround", where the
rest of the room is still visible to the viewer, but is noticeably
darker than the reproduced image itself. This is typical of television
viewing, at least in the evening, as well as subdued-light computer work
areas. In dim surround conditions, the reproduced image needs to have a
gamma of about 1.25 relative to the original scene in order to look
natural.

The requirement for boosted contrast (gamma) in dark surround conditions
is due to the way the human visual system works, and applies equally
well to computer monitors. Thus, a PNG viewer trying to achieve the
maximum realism for the images it displays really needs to know what the
room lighting conditions are, and adjust the gamma of the displayed
image accordingly.

If asking the user about room lighting conditions is inappropriate or
too difficult, just assume that the overall gamma (viewing_gamma as
defined below) should be 1.0 or 1.25. That’s all that most systems that
implement gamma correction do.

What is a CRT’s gamma?

All CRT displays have a power-law transfer characteristic with a
gamma of about 2.5. This is due to the physical processes involved in
controlling the electron beam in the electron gun, and has nothing
to do with the phosphor.

An exception to this rule is fancy "calibrated" CRTs that
have internal electronics to alter their transfer function. If you have
one of these, you probably should believe what the manufacturer tells
you its gamma is. But in all other cases, assuming 2.5 is likely to
be pretty accurate.

There are various images around that purport to measure gamma, usually
by comparing the intensity of an area containing alternating white and
black with a series of areas of continuous gray of different intensity.
These are usually not reliable. Test images that use a "checkerboard"
pattern of black and white are the worst, because a single white pixel
will be reproduced considerably darker than a large area of white.
An image that uses alternating black and white horizontal lines (such as
the "gamma.png" test image at
ftp://ftp.uu.net/graphics/png/images/suite/gamma.png
is much better, but even it may be inaccurate at high "picture"
settings on some CRTs.

If you have a good photometer, you can measure the actual light output
of a CRT as a function of input voltage and fit a power function to
the measurements. However, note that this procedure is very sensitive

PNG 85 / 101

to the CRT’s black level adjustment, somewhat sensitive to its
picture adjustment, and also affected by ambient light.
Furthermore, CRTs spread some light from bright areas of an
image into nearby darker areas; a single bright spot against a black
background may be seen to have a "halo". Your measuring technique
will need to minimize the effects of this.

Because of the difficulty of measuring gamma, using either test
images or measuring equipment, you’re usually better off just
assuming gamma is 2.5 rather than trying to measure it.

What is gamma correction?

A CRT has a gamma of 2.5, and we can’t change that. To get an overall
gamma of 1.0 (or somewhere near that) for an imaging system, we need
to have at least one other component of the "image pipeline" that is
nonlinear. If, in fact, there is only one nonlinear stage in addition
to the CRT, then it’s traditional to say that the CRT has a certain
gamma, and that the other nonlinear stage provides "gamma correction"
to compensate for the CRT. However, exactly where the "correction" is
done depends on circumstance.

In all broadcast video systems, gamma correction is done in the
camera. This choice was made in the days when television electronics
were all analog, and a good gamma-correction circuit was expensive to
build. The original NTSC video standard required cameras to have a
transfer function with a gamma of 1/2.2, or about 0.45. Recently, a
more complex two-part transfer function has been adopted [SMPTE-170M],
but its behavior can be well approximated by a power function with a
gamma of 0.5. When the resulting image is displayed on a CRT with a
gamma of 2.5, the image on screen ends up with a gamma of about 1.25
relative to the original scene, which is appropriate for "dim
surround" viewing.

These days, video signals are often digitized and stored in computer
frame buffers. This works fine, but remember that gamma correction is
"built into" the video signal, and so the digitized video has a gamma
of about 0.5 relative to the original scene.

Computer rendering programs often produce linear samples. To display
these correctly, intensity on the CRT needs to be directly proportional to
the sample values in the frame buffer. This can be done with a
special hardware lookup table between the frame buffer and the CRT
hardware. The lookup table (often called LUT) is loaded with a
mapping that implements a power function with a gamma of 0.4, thus
providing "gamma correction" for the CRT gamma.

Thus, gamma correction sometimes happens before the frame buffer,
sometimes after. As long as images created in a particular
environment are always displayed in that environment, everything is
fine. But when people try to exchange images, differences in gamma
correction conventions often result in images that seem far too
bright and washed out, or far too dark and contrasty.

Gamma-encoded samples are good

So, is it better to do gamma correction before or after the frame

PNG 86 / 101

buffer?

In an ideal world, sample values would be stored in floating point,
there would be lots of precision, and it wouldn’t really matter
much. But in reality, we’re always trying to store images in as few
bits as we can.

If we decide to use samples that are linearly proportional to
intensity, and do the gamma correction in the frame buffer LUT,
it turns out that we need to use at least 12 bits for each of
red, green, and blue to have enough precision in intensity. With any
less than that, we will sometimes see "contour bands" or "Mach bands" in
the darker areas of the image, where two adjacent sample values are still
far enough apart in intensity for the difference to be visible.

However, through an interesting coincidence, the human eye’s subjective
perception of brightness is related to the physical stimulation of light
intensity in a manner that is very much like the power function used
for gamma correction. If we apply gamma correction to measured (or
calculated) light intensity before quantizing to an integer for storage
in a frame buffer, we can get away with using many fewer
bits to store the image. In fact, 8 bits per color is almost always
sufficient to avoid contouring artifacts. This is because, since
gamma correction is so closely related to human perception, we are
assigning our 256 available sample codes to intensity values in a manner
that approximates how visible those intensity changes are to the eye.
Compared to a linear-sample image, we allocate fewer sample values to
brighter parts of the tonal range and more sample values to the darker
portions of the tonal range.

Thus, for the same apparent image quality, images using gamma-encoded
sample values need only about two-thirds as many bits of storage as images
using linear samples.

General gamma handling

When more than two nonlinear transfer functions are involved
in the image pipeline, the term "gamma correction" becomes too vague.
If we consider a pipeline that
involves capturing (or calculating) an image, storing it in an
image file, reading the file, and displaying the image on some
sort of display screen, there are at least 5 places in the
pipeline that could have nonlinear transfer functions. Let’s give
each a specific name for their characteristic gamma:

- camera_gamma
the characteristic of the image sensor

- encoding_gamma
the gamma of any transformation performed by the software writing
the image file

- decoding_gamma
the gamma of any transformation performed by the software reading
the image file

- LUT_gamma
the gamma of the frame buffer LUT, if present

- CRT_gamma
the gamma of the CRT, generally 2.5

PNG 87 / 101

In addition, let’s add a few other names:

- file_gamma
the gamma of the image in the file, relative to the original
scene. This is

file_gamma = camera_gamma * encoding_gamma

- display_gamma
the gamma of the "display system" downstream of the frame buffer.
This is

display_gamma = LUT_gamma * CRT_gamma

- viewing_gamma
the overall gamma that we want to obtain to produce
pleasing images --- generally 1.0 to 1.5.

The file_gamma value, as defined above, is what goes in the
gAMA chunk in a PNG file. If file_gamma is not 1.0, we know
that gamma correction has been done on the sample values in the file,
and we could call them "gamma corrected" samples. However, since
there can be so many different values of gamma in the image display
chain, and some of them are not known at the time the image is
written, the samples are not really being "corrected" for a specific
display condition. We are really using a power function in the
process of encoding an intensity range into a small integer field,
and so it is more correct to say "gamma encoded" samples instead of
"gamma corrected" samples.

When displaying an image file, the image decoding program is responsible
for making the overall gamma of the system equal to the desired
viewing_gamma, by selecting the decoding_gamma appropriately. When
displaying a PNG file, the gAMA chunk provides the file_gamma value.
The display_gamma may be known for this machine, or it might
be obtained from the system software, or the user might have to be asked
what it is. The correct viewing_gamma depends on lighting conditions,
and that will generally have to come from the user.

Ultimately, you should have

file_gamma * decoding_gamma * display_gamma = viewing_gamma

Some specific examples

In digital video systems, camera_gamma is about 0.5 by declaration of
the various video standards documents. CRT_gamma is 2.5 as usual, while
encoding_gamma, decoding_gamma, and LUT_gamma are all 1.0. As a result,
viewing_gamma ends up being about 1.25.

On frame buffers that have hardware gamma correction tables,
and that are calibrated to display linear samples correctly,
display_gamma is 1.0.

Many workstations and X terminals and PC displays lack gamma

PNG 88 / 101

correction lookup tables. Here, LUT_gamma is always 1.0, so
display_gamma is 2.5.

On the Macintosh, there is a LUT. By default, it is loaded with a
table whose gamma is about 0.72, giving a display_gamma (LUT and CRT
combined) of about 1.8. Some Macs have a "Gamma" control panel that
allows gamma to be changed to 1.0, 1.2, 1.4, 1.8, or 2.2. These
settings load alternate LUTs that are designed to give a
display_gamma that is equal to the label on the selected button.
Thus, the "Gamma" control panel setting can be used directly as
display_gamma in decoder calculations.

On recent SGI systems, there is a hardware gamma-correction
table whose contents are controlled by the (privileged) "gamma"
program. The gamma of the table is actually the reciprocal of
the number that "gamma" prints, and it does not include the CRT
gamma. To obtain the display_gamma, you need to find the SGI
system gamma (either by looking in a file, or asking the user) and
then calculating

display_gamma = 2.5 / SGI_system_gamma

You will find SGI systems with the system gamma set to 1.0 and
2.2 (or higher), but the default when machines are shipped is 1.7.

A note about video gamma

The original NTSC video standards specified a simple power-law camera
transfer function with a gamma of 1/2.2 or 0.45. This is not possible
to implement exactly in analog hardware because the function has
infinite slope at x=0, so all cameras deviated to some degree from
this ideal. More recently, a new camera transfer function that is
physically realizable has been accepted as a standard [SMPTE-170M].
It is

Vout = 4.5 * Vin if Vin < 0.018
Vout = 1.099 * (Vin^0.45) - 0.099 if Vin >= 0.018

where Vin and Vout are measured on a scale of 0 to 1. Although the
exponent remains 0.45, the multiplication and subtraction change the
shape of the transfer function, so it is no longer a pure power
function. If you want to perform extremely precise calculations on
video signals, you should use the expression above (or its inverse, as
required).

However, PNG does not provide a way to specify that an image uses this
exact transfer function; the gAMA chunk always assumes a
pure power-law function. If we plot the two-part transfer function
above along with the family of pure power functions, we find that a
power function with a gamma of about 0.5 to 0.52 (not 0.45) most
closely approximates the transfer function. Thus, when writing a PNG
file with data obtained from digitizing the output of a modern video
camera, the gAMA chunk should contain 0.5 or 0.52, not 0.45.
The remaining difference between the true transfer function and the
power function is insignificant for almost all purposes. (In fact,
the alignment errors in most cameras are likely to be larger than the
difference between these functions.) The designers of PNG deemed the

PNG 89 / 101

simplicity and flexibility of a power-law definition of gAMA
to be more important than being able to describe the SMPTE-170M
transfer curve exactly.

The PAL and SECAM video standards specify a power-law camera transfer
function with a gamma of 1/2.8 or 0.36 --- not the 1/2.2 of NTSC.
However, this is too low in practice, so real cameras are
likely to have their gamma set close to NTSC practice. Just guessing
0.45 or 0.5 is likely to give you viewable results, but if you want
precise values you’ll probably have to measure the particular camera.

Further reading

If you have access to the World Wide Web, read Charles Poynton’s
excellent "Gamma FAQ"
([GAMMA-FAQ] http://www.inforamp.net/~poynton/Poynton-colour.html)
for more information about gamma.

1.94 14. Appendix: Color Tutorial

14. Appendix: Color Tutorial

(This appendix is not part of the formal PNG specification.)

About chromaticity

The cHRM chunk is used, together with the gAMA
chunk, to convey precise color information so that a PNG image can be
displayed or printed with better color fidelity than is possible
without this information. The preceding chapters state how this
information is encoded in a PNG image. This tutorial briefly outlines
the underlying color theory for those who might not be familiar with it.

Note that displaying an image with incorrect gamma
will produce much larger color errors than failing to use the
chromaticity data. First be sure the monitor set-up and gamma
correction are right, then worry about chromaticity.

The problem

The color of an object depends not only on the precise spectrum of
light emitted or reflected from it, but also on the observer --- their
species, what else they can see at the same time, even what they have
recently looked at! Furthermore, two very different spectra can
produce exactly the same color sensation. Color is not an objective
property of real-world objects; it is a subjective, biological
sensation. However, by making some simplifying assumptions (such as:
we are talking about human vision) it is possible to produce
a mathematical model of color and thereby obtain good color accuracy.

Device-dependent color

Display the same RGB data on three different monitors, side by side,
and you will get a noticeably different color balance on each display.

PNG 90 / 101

This is because each monitor emits a slightly different shade and
intensity of red, green, and blue light. RGB is an example of a
device-dependent color model --- the color you get depends on
the device. This also means that a particular color --- represented as
say RGB 87, 146, 116 on one monitor --- might have to be specified as
RGB 98, 123, 104 on another to produce the same color.

Device-independent color

A full physical description of a color would require specifying the
exact spectral power distribution of the light source. Fortunately,
the human eye and brain are not so sensitive as to require exact
reproduction of a spectrum. Mathematical, device-independent color
models exist that describe fairly well how a particular color will be
seen by humans. The most important device-independent color model, to
which all others can be related, was developed by the International
Lighting Committee (CIE, in French) and is called XYZ.

In XYZ, X is the sum of a weighted power distribution over the whole
visible spectrum. So are Y and Z, each with different weights. Thus
any arbitrary spectral power distribution is condensed down to just
three floating point numbers. The weights were derived from color
matching experiments done on human subjects in the 1920s. CIE XYZ has
been an International Standard since 1931, and it has a number of
useful properties:

- two colors with the same XYZ values will look the same to humans
- two colors with different XYZ values will not look the same
- the Y value represents all the brightness information (luminance)
- the XYZ color of any object can be objectively measured

Color models based on XYZ have been used for many years by people who
need accurate control of color --- lighting engineers for film and TV,
paint and dyestuffs manufacturers, and so on. They are thus proven in
industrial use. Accurate, device-independent color started to spread
from high-end, specialized areas into the mainstream during the late
1980s and early 1990s, and PNG takes notice of that trend.

Calibrated, device-dependent color

Traditionally, image file formats have used uncalibrated,
device-dependent color. If the precise details of the original display
device are known, it becomes possible to convert the device-dependent
colors of a particular image to device-independent ones. Making
simplifying assumptions, such as working with CRTs (which are much
easier than printers), all we need to know are the XYZ values of each
primary color and the CRT_gamma.

So why does PNG not store images in XYZ instead of RGB? Well, two
reasons. First, storing images in XYZ would require more bits of
precision, which would make the files bigger. Second, all programs
would have to convert the image data before viewing it. Whether
calibrated or not, all variants of RGB are close enough that
undemanding viewers can get by with simply displaying the data without
color correction. By storing calibrated RGB, PNG retains
compatibility with existing programs that expect RGB data, yet

PNG 91 / 101

provides enough information for conversion to XYZ in applications that
need precise colors. Thus, we get the best of both worlds.

What are chromaticity and luminance?

Chromaticity is an objective measurement of the color of an object,
leaving aside the brightness information. Chromaticity uses two
parameters x and y, which are readily calculated from XYZ:

x = X / (X + Y + Z)
y = Y / (X + Y + Z)

XYZ colors having the same chromaticity values will appear to have the
same hue but can vary in absolute brightness. Notice that x,y
are dimensionless ratios, so they have the same values no matter what
units we’ve used for X,Y,Z.

The Y value of an XYZ color is directly proportional to its absolute
brightness and is called the luminance of the color. We can
describe a color either by XYZ coordinates or by chromaticity
x,y plus luminance Y. The XYZ form has the advantage that
it is linearly related to (linear, gamma=1.0) RGB color spaces.

How are computer monitor colors described?

The "white point" of a monitor is the chromaticity x,y of the
monitor’s nominal white, that is, the color produced when R=G=B=maximum.

It’s customary to specify monitor colors by giving the
chromaticities of the individual phosphors R, G, and B, plus the white
point. The white point allows one to infer the relative brightnesses
of the three phosphors, which isn’t determined by their chromaticities
alone.

Note that the absolute brightness of the monitor is not specified.
For computer graphics work, we generally don’t care very much about
absolute brightness levels. Instead of dealing with absolute XYZ
values (in which X,Y,Z are expressed in physical units of radiated
power, such as candelas per square meter), it is convenient to work
in "relative XYZ" units, where the monitor’s nominal white is taken to
have a luminance (Y) of 1.0. Given this assumption, it’s simple to
compute XYZ coordinates for the monitor’s white, red, green, and blue
from their chromaticity values.

Why does cHRM use x,y rather than XYZ? Simply because
that is how manufacturers print the information in their spec sheets!
Usually, the first thing a program will do is convert the cHRM
chromaticities into relative XYZ space.

What can I do with it?

If a PNG file has the gAMA and cHRM chunks,
the source_RGB values can be converted to XYZ. This lets you:

- do accurate grayscale conversion (just use the Y component)

PNG 92 / 101

- convert to RGB for your own monitor (to see the original colors)
- print the image in Level 2 PostScript with better color

fidelity than a simple RGB to CMYK conversion could provide
- calculate an optimal color palette
- pass the image data to a color management system
- etc.

How do I convert from source_RGB to XYZ?

Make a few simplifying assumptions first, like the monitor really is
jet black with no input and the guns don’t interfere with one another.
Then, given that you know the CIE XYZ values for each of red, green,
and blue for a particular monitor, you put them into a matrix
m:

Xr Xg Xb
m = Yr Yg Yb

Zr Zg Zb

Here we assume we are working with linear RGB floating point
data in the range 0..1. If the gamma is not 1.0, make it so on the
floating point data. Then convert source_RGB to XYZ by matrix
multiplication:

X R
Y = m G
Z B

In other words, X = Xr*R + Xg*G + Xb*B, and similarly
for Y and Z. You can go the other way too:

R X
G = im Y
B Z

where im is the inverse of the matrix m.

What is a gamut?

The gamut of a device is the subset of visible colors which that
device can display. (It has nothing to do with gamma.) The
gamut of an RGB device can be visualized as a polyhedron in XYZ space;
the vertices correspond to the device’s black, blue, red, green,
magenta, cyan, yellow and white.

Different devices have different gamuts, in other words one device
will be able to display certain colors (usually highly saturated ones)
that another device cannot. The gamut of a particular RGB device can be
determined from its R, G, and B chromaticities and white point (the
same values given in the cHRM chunk). The gamut of a color
printer is more complex and can only be determined by measurement.
However, printer gamuts are typically smaller than monitor gamuts,
meaning that there can be many colors in a displayable image that
cannot physically be printed.

PNG 93 / 101

Converting image data from one device to another generally results in
gamut mismatches --- colors that cannot be represented exactly on the
destination device. The process of making the colors fit, which can
range from a simple clip to elaborate nonlinear scaling transformations,
is termed gamut mapping. The aim is to produce a reasonable visual
representation of the original image.

Further reading

References [COLOR-1] through [COLOR-5] provide more detail about
color theory.

1.95 15. Appendix: Sample CRC Code

15. Appendix: Sample CRC Code

The following sample code represents a practical implementation
of the CRC (Cyclic Redundancy Check) employed in PNG chunks.
(See also ISO 3309 [ISO-3309] or ITU-T V.42 [ITU-V42] for a formal
specification.)

The sample code is in the ANSI C programming language.
Non C users may find it easier to read with these hints:

- &
Bitwise AND operator.

- ^
Bitwise exclusive-OR operator. (Caution: elsewhere in this
document, ^ represents exponentiation.)

- >>
Bitwise right shift operator. When applied to an unsigned
quantity, as here, right shift inserts zeroes at the left.

- !
Logical NOT operator.

- ++
"n++" increments the variable n.

- 0xNNN
0x introduces a hexadecimal (base 16) constant.
Suffix L indicates a long value (at least 32 bits).

/* Table of CRCs of all 8-bit messages. */
unsigned long crc_table[256];

/* Flag: has the table been computed? Initially false. */

PNG 94 / 101

int crc_table_computed = 0;

/* Make the table for a fast CRC. */
void make_crc_table(void)
{

unsigned long c;
int n, k;

for (n = 0; n < 256; n++) {
c = (unsigned long) n;
for (k = 0; k < 8; k++) {

if (c & 1)
c = 0xedb88320L ^ (c >> 1);

else
c = c >> 1;

}
crc_table[n] = c;

}
crc_table_computed = 1;

}

/* Update a running CRC with the bytes buf[0..len-1]--the CRC
should be initialized to all 1’s, and the transmitted value
is the 1’s complement of the final running CRC (see the
crc() routine below)). */

unsigned long update_crc(unsigned long crc, unsigned char *buf,
int len)

{
unsigned long c = crc;
int n;

if (!crc_table_computed)
make_crc_table();

for (n = 0; n < len; n++) {
c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);

}
return c;

}

/* Return the CRC of the bytes buf[0..len-1]. */
unsigned long crc(unsigned char *buf, int len)
{

return update_crc(0xffffffffL, buf, len) ^ 0xffffffffL;
}

1.96 16. Appendix: Online Resources

16. Appendix: Online Ressources

(This appendix is not part of the formal PNG specification.)

PNG 95 / 101

This appendix gives the locations of some Internet resources for PNG
software developers. By the nature of the Internet, the list is
incomplete and subject to change.

Archive sites

The latest released versions of this document and related information
can always be found at the PNG FTP archive site,
ftp://ftp.uu.net/graphics/png/ .
The PNG specification is available in several formats, including HTML, plain
text, and PostScript.

Reference implementation and test images

A reference implementation in portable C is available from the PNG FTP
archive site, ftp://ftp.uu.net/graphics/png/src/ .
The reference implementation is freely usable in all
applications, including commercial applications.

Test images are available from
ftp://ftp.uu.net/graphics/png/images/ .

Electronic mail

The maintainers of the PNG specification can be contacted by e-mail at
png-info@uunet.uu.net or at png-group@w3.org .

PNG home page

There is a World Wide Web home page for PNG at
http://quest.jpl.nasa.gov/PNG/ .
This page is a central location for current information about PNG
and PNG-related tools.

1.97 17. Appendix: Revision History

17. Appendix: Revision History

(This appendix is not part of the formal PNG specification.)

The PNG format has been frozen since the Ninth Draft of March 7, 1995,
and all future changes are intended to be backwards compatible.
The revisions since the Ninth Draft are simply clarifications,
improvements in presentation, and additions of supporting material.

On 1 October 1996, the PNG specification was approved as a W3C
([World Wide Web Consortium] http://www.w3.org/)
Recommendation.

At that time, it was awaiting publication as an Informational RFC.

Changes since the Tenth Draft of 5 May, 1995

PNG 96 / 101

- Clarified meaning of a suggested-palette PLTE chunk in a
truecolor image that uses transparency

- Clarified exact semantics of sBIT and allowed sample depth
scaling procedures

- Clarified status of spaces in tEXt chunk keywords
- Distinguished private and public extension values in type and

method fields
- Added a "Creation Time" tEXt keyword
- Macintosh representation of PNG specified
- Added discussion of security issues
- Added more extensive discussion of gamma and chromaticity

handling, including tutorial appendixes
- Clarified terminology, notably sample depth vs. bit depth
- Added a glossary
- Editing and reformatting

1.98 18. References

18. References

- [COLOR-1]
Hall, Roy, Illumination and Color in Computer Generated
Imagery. Springer-Verlag, New York, 1989. ISBN 0-387-96774-5.

- [COLOR-2]
Kasson, J., and W. Plouffe, "An Analysis of Selected Computer
Interchange Color Spaces", ACM Transactions on Graphics,
vol 11 no 4 (1992), pp 373-405.

- [COLOR-3]
Lilley, C., F. Lin, W.T. Hewitt, and T.L.J. Howard,
([Colour in Computer Graphics]
http://info.mcc.ac.uk/CGU/ITTI/Col/colour_announce.html.
CVCP, Sheffield, 1993.
ISBN 1-85889-022-5.

Also available from

http://info.mcc.ac.uk/CGU/ITTI/Col/colour_announce.html

- [COLOR-4]
Stone, M.C., W.B. Cowan, and J.C. Beatty, "Color gamut mapping and
the printing of digital images", ACM Transactions on Graphics, vol 7
no 3 (1988), pp 249-292.

- [COLOR-5]
Travis, David, Effective Color Displays --- Theory and
Practice. Academic Press, London, 1991.
ISBN 0-12-697690-2.

PNG 97 / 101

- [GAMMA-FAQ]
Poynton, C., "Gamma FAQ".

http://www.inforamp.net/~poynton/Poynton-colour.html

- [ISO-3309]
International Organization for Standardization, "Information
Processing Systems --- Data Communication High-Level Data Link Control
Procedure --- Frame Structure", IS 3309, October 1984, 3rd Edition.

- [ISO-8859]
International Organization for Standardization, "Information
Processing --- 8-bit Single-Byte Coded Graphic Character Sets ---
Part 1: Latin Alphabet No. 1", IS 8859-1, 1987.

Also see sample files at

ftp://ftp.uu.net/graphics/png/documents/

- [ITU-BT709]
International Telecommunications Union, "Basic Parameter Values for
the HDTV Standard for the Studio and for International Programme
Exchange", ITU-R Recommendation BT.709 (formerly CCIR Rec. 709), 1990.

- [ITU-V42]
International Telecommunications Union, "Error-correcting Procedures
for DCEs Using Asynchronous-to-Synchronous Conversion", ITU-T
Recommendation V.42, 1994, Rev. 1.

- [PAETH]
Paeth, A.W., "Image File Compression Made Easy", in Graphics Gems
II, James Arvo, editor. Academic Press, San Diego, 1991.
ISBN 0-12-064480-0.

- [POSTSCRIPT]
Adobe Systems Incorporated, PostScript Language Reference
Manual, 2nd edition. Addison-Wesley, Reading, 1990.
ISBN 0-201-18127-4.

- [PNG-EXTENSIONS]
PNG Group, "PNG Special-Purpose Public Chunks".
Available in several formats from

ftp://ftp.uu.net/graphics/png/documents/

- [RFC-1123]
Braden, R., Editor, "Requirements for Internet Hosts --- Application
and Support", STD 3, RFC 1123, USC/Information Sciences Institute,
October 1989.

ftp://ds.internic.net/rfc/rfc1123.txt

- [RFC-1521]
Borenstein, N., and N. Freed, "MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing the
Format of Internet Message Bodies", RFC 1521, Bellcore, Innosoft,
September 1993.

PNG 98 / 101

ftp://ds.internic.net/rfc/rfc1521.txt

- [RFC-1590]
Postel, J., "Media Type Registration Procedure", RFC 1590,
USC/Information Sciences Institute, March 1994.

ftp://ds.internic.net/rfc/rfc1590.txt

- [RFC-1950]
Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data Format
Specification version 3.3",
RFC 1950, Aladdin Enterprises, May 1996.

ftp://ds.internic.net/rfc/rfc1950.txt

- [RFC-1951]
Deutsch, P., "DEFLATE Compressed Data Format Specification version 1.3",
RFC 1951, Aladdin Enterprises, May 1996.

ftp://ds.internic.net/rfc/rfc1951.txt

- [SMPTE-170M]
Society of Motion Picture and Television Engineers, "Television ---
Composite Analog Video Signal --- NTSC for Studio Applications",
SMPTE-170M, 1994.

1.99 19. Credits

19. Credits

Editor

Thomas Boutell, boutell@boutell.com

Contributing Editor

Tom Lane, tgl@sss.pgh.pa.us

Authors

Authors’ names are presented in alphabetical order.

- Mark Adler http://www.alumni.caltech.edu/~madler/ ,
madler@alumni.caltech.edu

- Thomas Boutell http://www.boutell.com/boutell/ ,
boutell@boutell.com

- Christian Brunschen http://www.df.lth.se/~cb/ ,
cb@df.lth.se

PNG 99 / 101

- Adam M. Costello http://www.cs.berkeley.edu/~amc/ ,
amc@cs.berkeley.edu

- Lee Daniel Crocker http://www.piclab.com/ ,
lee@piclab.com

- Andreas Dilger http://www-mddsp.enel.ucalgary.ca/People/adilger/ ,
adilger@enel.ucalgary.ca

- Oliver Fromme http://www.tu-clausthal.de/~inof/ ,
fromme@rz.tu-clausthal.de

- Jean-loup Gailly,
gzip@prep.ai.mit.edu

- Chris Herborth http://www.qnx.com/~chrish/ ,
chrish@qnx.com

- Aleks Jakulin,
Aleks.Jakulin@snet.fri.uni-lj.si

- Neal Kettler http://www.vis.colostate.edu/~user1209/ ,
kettler@cs.colostate.edu

- Tom Lane,
tgl@sss.pgh.pa.us

- Alexander Lehmann http://www.mathematik.th-darmstadt.de/~lehmann/ ,
alex@hal.rhein-main.de

- Chris Lilley http://www.w3.org/pub/WWW/People/chris/ ,
chris@w3.org

- Dave Martindale,
davem@cs.ubc.ca

- Owen Mortensen,
104707.650@compuserve.com

- Keith S. Pickens,
ksp@swri.edu

- Robert P. Poole,
lionboy@primenet.com

- Glenn Randers-Pehrson http://www.rpi.edu/~randeg/ ,
glennrp@arl.mil or randeg@alumni.rpi.edu

- Greg Roelofs http://pobox.com/~newt/ ,
newt@pobox.com

- Willem van Schaik http://mht3.gintic.gov.sg:8000/wwwillem.html ,
willem@gintic.gov.sg

- Guy Schalnat

- Paul Schmidt,

PNG 100 / 101

pschmidt@photodex.com

- Tim Wegner,
71320.675@compuserve.com

- Jeremy Wohl,
jeremyw@anders.com

The authors wish to acknowledge the contributions of the Portable
Network Graphics mailing list, the readers of comp.graphics, and
the members of the World Wide Web Consortium (http://www.w3.org/).

The Adam7 interlacing scheme is not patented and it is not the
intention of the originator of that scheme to patent it. The scheme
may be freely used by all PNG implementations. The name "Adam7" may
be freely used to describe interlace method 1 of the PNG specification.

Trademarks

GIF is a service mark of CompuServe Incorporated.
IBM PC is a trademark of International Business Machines Corporation.
Macintosh is a trademark of Apple Computer, Inc.
Microsoft and MS-DOS are trademarks of Microsoft Corporation.
PhotoCD is a trademark of Eastman Kodak Company.
PostScript and TIFF are trademarks of Adobe Systems Incorporated.
SGI is a trademark of Silicon Graphics, Inc.
X Window System is a trademark of the Massachusetts Institute of
Technology.

COPYRIGHT NOTICE

Copyright © 1996 by: Massachusetts Institute of Technology (MIT)

This W3C specification is being provided by the copyright holders under
the following license. By obtaining, using and/or copying this
specification, you agree that you have read, understood, and will
comply with the following terms and conditions:

Permission to use, copy, and distribute this specification
for any purpose and without fee or royalty is hereby
granted, provided that the full text of this NOTICE appears on
ALL copies of the specification or portions
thereof, including modifications, that you make.

THIS SPECIFICATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS
OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE
OR THAT THE USE OF THE SPECIFICATION WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS. COPYRIGHT HOLDERS WILL BEAR NO LIABILITY FOR ANY USE OF THIS
SPECIFICATION.

The name and trademarks of copyright holders may NOT be
used in advertising or publicity pertaining to the specification

PNG 101 / 101

without specific, written prior permission. Title to copyright in
this specification and any associated documentation will at all times
remain with copyright holders.

End of PNG Specification

1.100 AmigaGuide version 1.0

Converted from HTML on 9 Dec. 1996

Philippe Duchenne <Philippe.Duchenne@ping.be>

http://www.ping.be/~ping3412/

	PNG
	PNG (Portable Network Graphics) Specification
	PNG specification: Table of Contents
	1. Introduction
	2. Data Representation
	2.1. Integers and byte order
	2.2. Color values
	2.3. Image layout
	2.4. Alpha channel
	2.5. Filtering
	2.6. Interlaced data order
	2.7. Gamma correction
	2.8. Text strings
	3. File Structure
	3.1. PNG file signature
	3.2. Chunk layout
	3.3. Chunk naming conventions
	3.4. CRC algorithm
	4. Chunk Specifications
	4.1. Critical chunks
	4.1.1. IHDR Image header
	4.1.2. PLTE Palette
	4.1.3. IDAT Image data
	4.1.4. IEND Image trailer
	4.2. Ancillary chunks
	4.2.1. bKGD Background color
	4.2.2. cHRM Primary chromaticities and white point
	4.2.3. gAMA Image gamma
	4.2.4. hIST Image histogram
	4.2.5. pHYs Physical pixel dimensions
	4.2.6. sBIT Significant bits
	4.2.7. tEXt Textual data
	4.2.8. tIME Image last-modification time
	4.2.9. tRNS Transparency
	4.2.10. zTXt Compressed textual data
	4.3. Summary of standard chunks
	4.4. Additional chunk types
	5. Deflate/Inflate Compression
	6. Filter Algorithms
	6.1. Filter types
	6.2. Filter type 0: None
	6.3. Filter type 1: Sub
	6.4. Filter type 2: Up
	6.5. Filter type 3: Average
	6.6. Filter type 4: Paeth
	7. Chunk Ordering Rules
	7.1. Behavior of PNG editors
	7.2. Ordering of ancillary chunks
	7.3. Ordering of critical chunks
	8. Miscellaneous Topics
	8.1. File name extension
	8.2. Internet media type
	8.3. Macintosh file layout
	8.4. Multiple-image extension
	8.5. Security considerations
	9. Recommendations for Encoders
	9.1. Sample depth scaling
	9.2. Encoder gamma handling
	9.3. Encoder color handling
	9.4. Alpha channel creation
	9.5. Suggested palettes
	9.6. Filter selection
	9.7. Text chunk processing
	9.8. Use of private chunks
	9.9. Private type and method codes
	10. Recommendations for Decoders
	10.1. Error checking
	10.2. Pixel dimensions
	10.3. Truecolor image handling
	10.4. Sample depth rescaling
	10.5. Decoder gamma handling
	10.6. Decoder color handling
	10.7. Background color
	10.8. Alpha channel processing
	10.9. Progressive display
	10.10. Suggested-palette and histogram usage
	10.11. Text chunk processing
	11. Glossary
	12. Appendix: Rationale
	12.1. Why a new file format?
	12.2. Why these features?
	12.3. Why not these features?
	12.4. Why not use format X?
	12.5. Byte order
	12.6. Interlacing
	12.7. Why gamma?
	12.8. Non-premultiplied alpha
	12.9. Filtering
	12.10. Text strings
	12.11. PNG file signature
	12.12. Chunk layout
	12.13. Chunk naming conventions
	12.14. Palette histograms
	13. Appendix: Gamma Tutorial
	14. Appendix: Color Tutorial
	15. Appendix: Sample CRC Code
	16. Appendix: Online Resources
	17. Appendix: Revision History
	18. References
	19. Credits
	AmigaGuide version 1.0

